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Status
This draft contains an early but stable version of the JSONiq specification. It is still subject to change,
but is ready for early implementation experience. See Appendix A, Revision History for a list of recent
changes.
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Introduction
JSON and XML are both widely used for data interchange on the Internet. In many applications,
JSON is replacing XML in Web Service APIs and data feeds; other applications support both formats.
XML adds significant overhead for namespaces, whitespace handling, the oddities of XML Schema,
and other things that are simply not needed in many data-oriented applications that require no more
than simple serialization of program structures. On the other hand, many applications do need these
features, and the ability to use document data together with traditional program data is important.

JSONiq is a small and simple set of extensions to XQuery that add support for JSON. For applications
that need only JSON, we have defined a profile called XQ-- that removes all support for XML
constructors, path expressions, user defined functions, and some other features considered
unnecessary for most JSON queries. Syntax diagrams for XQ-- are available at http://jsoniq.org/
grammars/xq--/ui.xhtml.

For applications that need to process XML together with JSON, we have defined a profile called XQ+
+ that adds these extensions to the full XQuery language. Syntax diagrams for XQ++ are available at
http://jsoniq.org/grammars/xq++/ui.xhtml.

JSONiq consists of the following extensions to XQuery:

• Extensions to the XQuery Data Model (XDM) to support JSON.

• Support for JSON's datatypes, with a mapping to equivalent XML Schema types.

• Navigation for JSON Objects and JSON Arrays.

• Constructors for JSON Objects, Pairs, and JSON Arrays, using the same syntax as JSON.

• Update primitives against JSON items as well as updating expressions which produce them.

• New item types, which extend sequence type matching to allow the type of JSONiq datatypes to be
specified in function parameters, return types, and other expressions that specify XQuery types.

JSONiq is designed to seamlessly integrate in XQuery's full composability paradigm. In particular,
JSON constructors can appear in any XQuery expression, and any XQuery expression can appear in
a JSON constructor.

The namespace http://jsoniq.org/functions is used for functions defined by this
specification. This namespace is exposed to the user and is bound by default to the prefix jn. For
instance, the function name jn:json-doc() is in this namespace.

The namespace http://jsoniq.org/types is used for types defined by this specification. This
namespace is exposed to the user and is bound by default to the prefix jn. For instance, the type
name js:null is in this namespace.

The namespace http://jsoniq.org/function-library is used for library functions defined
by this specification. This namespace is exposed to the user, however no prefix is predeclared for this
namespace. For convenience, this document uses the prefix libjn: for names in this namespace.
For instance, the function name libjn:accumulate is in this namespace.

The namespace http://jsoniq.org/errors is used for the names of errors defined by this
specification. This namespace is exposed to the user, however no prefix is predeclared for this
namespace. For convenience, this document uses the prefix jerr: for names in this namespace. For
instance, the error name jerr:JQTY0001 is in this namespace.

The namespace http://jsoniq.org/updates is used for the names of update primitives
defined by this specification. This namespace is not exposed to the user. For convenience, this

http://jsoniq.org/grammars/xq--/ui.xhtml
http://jsoniq.org/grammars/xq--/ui.xhtml
http://jsoniq.org/grammars/xq++/ui.xhtml
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document uses the prefix jupd: for names in this namespace. For instance, the update primitive
jupd:delete-from-object is in this namespace.

Accessors used in JSONiq Data Model use the jdm: prefix. These functions are not exposed to the
user and are for explanatory purposes of the data model within this document only. The jdm: prefix is
not associated with a namespace.
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JSONiq Data Model
JSONiq is based on the XQuery Data Model, adding support for JSON nulls, objects and arrays. 1

To support nulls, JSONiq adds the following atomic datatype:

• js:null, which represents a JSON null.

To support JSON objects and arrays, JSONiq adds the following new items:

• Object, which represents a JSON object. An Object contains a set of string/item pairs.

• Array, which represent a JSON array. An Array contains a sequence of items.

As well as the generic term (associated with an item type):

• JSON Item, which can be an Object or an Array.

3.1. Simple Datatypes
JSON's simple values can have any of the following datatypes, which are supported as primitives in
JSONiq.

• string

• number

• boolean (true, false)

• null

JSONiq represents a JSON string (a sequence of Unicode characters) as an xs:string. However,
JSON supports strings (after resolving escaped characters) with characters of arbitrary unicode
codepoints, whereas XML 1.0 and XML 1.1 only support a subset of these. It is implementation-
defined if unicode characters outside of XML 1.0 or XML 1.1 are supported. Implementations which
support XML 1.1 (which only excludes the null character) are encouraged to add support for the null
character to provide full-fledged JSON support.

JSONiq represents the JSON simple values 'true' and 'false' as xs:boolean values.

JSONiq adds one new data type: js:null, derived from xs:anyAtomicType. js:null has a
singleton value space containing the value null 2. The lexical representation of an instance of js:null
is the string "null".

JSON defines number as follows:

A number can be represented as integer, real, or floating point. JSON does not
support octal or hex because it is minimal. It does not have values for NaN or Infinity
because it does not want to be tied to any particular internal representation.

1 In the XQ-- subset of JSONiq, we will define a simpler data model that omits much of the XQuery Data Model.
2 (Because the typed value of all js:null instances is the same, nulls are always equal to each other for the purpose of value
comparisons).
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JSONiq uses XQuery's lexical representation of numbers to distinguish integer, real, and floating point
numbers 3:

NumericLiteral ::= IntegerLiteral | DecimalLiteral | DoubleLiteral

If a numeric literal has no "." character and no e or E character, it has the atomic type xs:integer;
if it has a "." character but no e or E character it has type xs:decimal; if it has an e or E character it
has type xs:double.

Number literals are mapped to atomic values according to the XML Schema specification.

3.2. JSON Items
A JSON Item is an item. A JSON Item has an identity 4 , and it can be serialized. Objects and Arrays
are JSON Items 5 .

The diagram below shows the XQuery 3.0 type hierarchy, adding JSON Item and all types derived
from it:

3 The result of a JSONiq query may contain values such as NaN or Infinity, which cannot be serialized as JSON. These values
have type xs:double, and are either rejected or treated in a special way during the JSON Serialization process.
ECMAScript also has has Infinity and NaN, and takes a similar approach.
4 The identity of an item is used only for updates, where it is used in the update primitives.
5 In this document, the words Object and Array refer to JSON constructs. Unlike objects in most programming languages, a
JSON object contains only data.
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3.3. Objects
An Object represents a JSON object (a collection of string/value pairs).

Objects have the following property:

• pairs. A set of pairs. Each pair consists of an atomic value of type xs:string and of an item.

[ Consistency constraint: no two pairs have the same name (using fn:codepoint-equal). ]

The XQuery data model uses accessors to explain the data model. Accessors are not exposed to the
user and are only used for convenience in this specification. Objects have the following accessors:

• jdm:keys($o as object()) as xs:string*.

Returns all keys in the object $o.

• jdm:value($o as object(), $s as xs:string) as item().
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Returns the value associated with $s in the object $o.

An Object does not have a typed value.

3.4. Arrays
An Array represents a JSON array (an unordered list of values).

Arrays have the following property:

• members. An ordered list of items.

Arrays have the following accessors:

• jdm:size($a as array()) as xs:integer

Returns the number of values in the array $a.

• jdm:value($a as array(), $i as xs:integer) as item()

Returns the value at position $i in the array $a.

An Array does not have a typed value.

3.5. ItemTypes for JSONiq Items
In XQuery, an ItemType is used to match certain items, for example in function signatures, return
types, and a variety of other expressions. JSONiq extends XQuery's ItemType as follows:

      ItemType ::= -- everything so far --
        | JSONTest
        | StructuredItemTest

      JSONTest ::= 
          JSONItemTest
        | JSONObjectTest
        | JSONArrayTest

      StructuredItemTest ::= "structured-item" "(" ")"
      JSONItemTest ::= "json-item" "(" ")"
      JSONObjectTest ::= "object" "(" ")"
      JSONArrayTest ::= "array" "(" ")"

The semantics of these expressions are straightforward.

• structured-item() matches any node or JSON Item.

• json-item() matches any JSON Item (Object or Array).

• object() matches any Object.

• array() matches any Array.

Example 3.1. JSON Items in Function Signatures and instance-of expressions
The following function returns any Objects that are members of an Array (see below for more on
array navigation).



ItemTypes for JSONiq Items

9

          declare function local:objects-in-array($a as array()) as object()* {
            for $i in 1 to jn:size($a)
            let $item := $a($i)
            where $iteminstance of object()
            return $item
          };



10



Chapter 4.

11

Construction of JSON values
JSONiq Constructors create Objects, and Arrays. If an Object Constructor or an Array Constructor
contains only literal data, as a rule of thumb, the syntax is the same as the JSON serialization.
Constructors can also contain XQuery expressions to create content as the result of a query.

Here is the syntax for object and array constructors:

      PrimaryExpr ::= -- everything so far --
        | JSONConstructor

      JSONConstructor ::=
          ArrayConstructor
        | ObjectConstructor

      ArrayConstructor ::= "[" Expr? "]"

      ObjectConstructor ::=  "{" ( PairConstructor ("," PairConstructor)* )? "}"
      PairConstructor ::=  ExprSingle ":" ExprSingle

XQuery expressions can occur within JSON constructors, and JSON constructors can occur within
XQuery expressions. The semantics of such expressions are discussed in Chapter 9, Combining XML
and JSON.

4.1. Array Constructors
The expression in an Array Constructor, if present, evaluates to a sequence of zero or more items.
The members of the constructed array are copies of these items, in the same order.

Example 4.1. Array Constructors
An Array Constructor:

        [ "Sunday",
          "Monday",
          "Tuesday",
          "Wednesday",
          "Thursday",
          "Friday",
          "Saturday" ]

Arrays can nest.

          [
            [1, 2, 3],
            [4, 5, 6],
            [7, 8, 9]
          ]

Combining an Array Constructor with XQuery expressions:

Query:

        [ 10 to 15 ]
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Result:

        [ 10, 11, 12, 13, 14, 15 ]

4.2. Object Constructors
An Object Constructor is made of Pair Constructors. Each Pair Constructor creates a single string/item
pair as follows:
• The string is the result of evaluating the left operand, atomizing it, checking that it results in a single

atomic item, and casting it to xs:string. Errors such as jerr:JNTY0004 or err:XPTY0004 may
be raised upon failure of one of these steps.

• If the right operand evaluates to a single item, the value of the pair is a copy of this result.

If the right operand evaluates to the empty sequence, the value of the pair is the atomic value null
(of type js:null).

If the right operand evaluates to a sequence of more than one item, the value of the pair is an array
containing copies of all items in this sequence, in the same order.

An object is constructed, the pairs property of which comprise all pairs generated by the pair
constructors. An error jerr:JNDY0003 is raised if two pairs have the same name (the comparison is
made using fn:codepoint-equal).

Example 4.2. Object Constructors
An Object Constructor with literal data:

          {
            "id" : 404,
            "name" : "Stanco Grease Pot",
            "price" : 6.49,
            "weight" : 3.8,
            "uses" : ["Grease storage","Backpacking pot"]
          }

Combining an Object Constructor with XQuery expressions:

Query:

          {
            "Sunday" : 1,
            "Monday" : 1 + 1,
            "Tuesday" : 3 * 1,
            "Wednesday" : 8 div 2,
            "Thursday" : 5,
            "Friday" : count(for $i in 1 to 6 return $i),
            "Saturday" : 10 - 3
          }

Result:

          {
            "Sunday" : 1,
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            "Monday" : 2,
            "Tuesday" : 3,
            "Wednesday" : 4,
            "Thursday" : 5,
            "Friday" : 6,
            "Saturday" : 7
          }

Note:

A JSON item cannot be a child of an XML element or attribute. If a JSON item is used in the content
expression of an XQuery constructor, the result will raise an error, as described in Chapter 9,
Combining XML and JSON.

4.3. Strings
Strings can be constructed using XQuery String Literals.

Example 4.3. JSON String construction

          "This is a string"

4.4. Numbers
Numbers can be constructed using XQuery Integer, Decimal and Double literals.

Example 4.4. JSON Number construction

          42
          3.14
          6.022E23

4.5. Booleans
Booleans can be constructed using the XQuery builtin functions fn:true() and fn:false().

4.6. Null
Null can be constructed using the new builtin function jn:null().

4.7. Boolean and null literals
A new option jn:jsoniq-boolean-and-null-literals is available ("yes" or "no"), that activates
or deactivates the interpretation of a standalone NameTest "true", "false" or "null" (meaning: occurring
as a PathExpr, i.e., no slashes, no axes) as boolean and null literals. By default, it is set to "yes". 1

1 If this feature is activated, a relative path expression that tests for an element named true, false, or null must use the ./
construct, as in ./true.
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Navigation in JSON content
It is possible to navigate through JSON items using the dynamic function call syntax. The dynamic
function call syntax is extended to handle object and array selection as follows:

• If the base expression returns a function, then the semantics is unchanged as of XQuery 3.0.

• If the base expression returns an object or an array, the semantics (object selection, array selection)
is defined in this section.

• If the base expression $s is a sequence of objects, or a sequence of arrays, then
$sequence($params) is equivalent to:

        for $item in $sequence return $item($params)

• Otherwise, an error err:XPTY0004 is raised.

5.1. Object selectors
If the base expression $o is an Object, the semantics applied is that of object selection and is as
follows.

If there is not exactly one parameter $s, then err:JNTY0018 is raised. $s is atomized and cast to
xs:string. Errors such as jerr:JNTY0004 or err:XPTY0004 may be raised upon failure of one of
these steps.

$o($s) returns the value of the pair with the name $s, i.e. jdm:value($o, $s) if $s is in
jdm:keys($o). An empty sequence is returned otherwise.

Example 5.1. Member Selectors for Objects
Retrieving a Pair by its name:

Query:

        let $map := { "eyes" : "blue", "hair" : "fuchsia" }
        return $map("eyes")

Result:

        blue

Using Pairs from existing Objects to create a new Object:

Query:

        let $x := { "eyes" : "blue", "hair" : "fuchsia" }
        let $y := { "eyes" : brown, "hair" : "brown" }
        return { "eyes" : $x("eyes"), "hair" : $y("hair") }

Result:
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          { "eyes" : "blue", "hair" : "brown" }

5.2. Array selectors
If the base expression $a is an Array, the semantics applied is that of array selection and is as follows.

If there is not exactly one parameter $i, then err:JNTY0018 is raised. $i is atomized and cast to
xs:integer. Errors such as jerr:JNTY0004 or err:XPTY0004 may be raised upon failure of one
of these steps.

$a($i) returns the value of the pair at position $i, i.e., jdm:value($a, $i) if $i is comprised
between 1 and jdm:size($a). An empty sequence is returned otherwise.

Example 5.2. Member Selectors for Arrays
Query:

        let $wd := ["Sunday", "Monday", "Tuesday", "Wednesday", "Thursday", "Friday",
 "Saturday"]
        return $wd(1)

Result:

        Sunday

For the following queries, assume the variable $f is bound to the following two dimensional array.

Data:

        [
          [ "mercury", "venus", "earth", "mars" ],
          [ "monday", "tuesday", "wednesday", "thursday"" ]
        ]

Query:

        $f(1)

Result:

        [ "mercury", "venus", "earth", "mars" ]

Query:

        $f(2)(2)

Result:
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        tuesday
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Builtin functions and operators
JSONiq defines a couple of basic builtin functions. Two of them define the atomized value and the
effective boolean value of JSON items, and the others are for JSON navigation.

6.1. fn:boolean (aka Effective Boolean Value)
In XQuery, sequences can be converted to a boolean value. The effective boolean value is defined by
invoking fn:boolean.

The definition of fn:boolean($arg) is changed as follows:

• If $arg is a sequence whose first item is an object or an array, fn:boolean returns true.

• If $arg is a singleton value of type js:null, fn:boolean returns false.

Example 6.1. Effective Boolean Value of JSONiq items

          Examples
          EBV( jn:null() )              false
          EBV( { } )                    true
          EBV ( { "foo": false } )      true
          EBV ( { "foo": 3, "bar":4 } ) true
          EBV( { "foo": 3 } )           true
          EBV ( [1] )                   true
          EBV ( [1], jn:null() )        true

6.2. fn:collection
This is a standard function in XQuery. JSONiq extends the function to also allow collections that
contains JSON items, in an implementation-dependent order

fn::collection($uri as xs:string?) as structured-item()*

6.3. fn:data (aka Atomization)
In XQuery, sequences can be atomized. Atomization is defined by invoking fn:data.

The error conditions of fn:data($arg) are extended as follows. An error is raised
(jerr:JNTY0004) if an item in the sequence is an object or an array.

Example 6.2. Atomization of JSONiq items

          fn:data( {"foo" : 3} )            jerr:JNTY0004
          fn:data( [1] )                   jerr:JNTY0004
          fn:data( {"foo" : 3, "bar" : 4 } ) jerr:JNTY0004
          fn:data( { } )                   jerr:JNTY0004

6.4. fn:string (aka string value)
In XQuery, items can have string values, which can be obtained by invoking fn:string. Objects and
arrays do not have a string value.
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The error conditions of fn:string($arg) are extended as follows. An error is raised
(jerr:JNTY0024) if the item is an object or an array.

Example 6.3. Atomization of JSONiq items

          fn:string( {"foo" : 3} )            jerr:JNTY0024
          fn:string( [1] )                   jerr:JNTY0024
          fn:string( {"foo" : 3, "bar" : 4 } ) jerr:JNTY0024
          fn:string( { } )                   jerr:JNTY0024

6.5. fn:trace
The default serialization method is changed to JSON-XML-hybrid.

6.6. jn:decode-from-roundtrip
This function decodes non-JSON types previously encoded with jn:encode-for-roundtrip.

jn:decode-from-roundtrip($items as json-item()*) as item()*

jn:decode-from-roundtrip($items as json-item()*, $options as object()) as
item()*

Calling the unary version of the function defaults the value of the second parameter ($options) to

        { "prefix" : "Q{http://jsoniq.org/roundtrip}" }

$options("prefix") must be atomizable and castable to a string.

Error jerr:JNTY0023 is raised if one of the above type criterion is not met.

This function maps each item of the input sequence to a new item in the output sequence, preserving
order.

For convenience, the map is defined recursively from item() to item(), even though the initial items
must be objects or arrays.

It maps an array to an array the members of which are mapped resursively.

It maps atomic values and XML nodes to themselves.

If the supplied item is an object, it first checks if it has two pairs named "[$prefix]type" and
"[$prefix]value" where [$prefix] stands for the value of $options("prefix").

If such is the case, then if the value of the first pair is "node()", it parses the value of the second pair to
an XML node that is returned by the function.

Otherwise, an atomic item is built, with the type specified by the value of the first pair (read as an
EQName, with xs: automatically recognized as the XSD namespace). If this type is not xs:QName,
xs:NOTATION or a subtype thereof, the atomic value is built from the lexical representation specified
by the value of the pair named "[$prefix]value".

If this type is xs:QName, xs:NOTATION or a subtype thereof, then the atomic value to be built is a
qualified name. The namespace and local name are built from the value (an EQName) of the pair
named "[$prefix]value", and the prefix is built from a third pair named "[$prefix]prefix" (empty if absent).
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If the object does not fit the above criterion, it is mapped to an object with the same keys, and the
associated values are mapped recursively.

Example 6.4. Encoding non-native JSON for roundtripping.
Query:

        jn:decode-from-roundtrip(
          {
            "nan" : {
              "Q{http://jsoniq.org/roundtrip}type" : "xs:double",
              "Q{http://jsoniq.org/roundtrip}value" : "NaN"
            },
            "inf" : {
              "Q{http://jsoniq.org/roundtrip}type" : "xs:double",
              "Q{http://jsoniq.org/roundtrip}value" : "INF"
            }
            "date" : {
              "Q{http://jsoniq.org/roundtrip}type" : "xs:date",
              "Q{http://jsoniq.org/roundtrip}value" : "1066-10-14"
             }
            "hat" : {
              "Q{http://jsoniq.org/roundtrip}type" : "Q{http://www.example.com/hat-
shop}hatSize",
              "Q{http://jsoniq.org/roundtrip}value" : "M"
            }
          }
        )

Result:

        {
          "nan" : xs:double("NaN"),
          "inf" : xs:double("INF"),
          "date" : xs:date("1066-10-14"),
          "user" : hat:hatSize("M")
        }

6.7. jn:encode-for-roundtrip
This function recursively encodes non-JSON types in such a way that they can be serialized as JSON
while keeping roundtrip capability.

The following computations are made with respect to the static context of the caller, so that the
schema type definitions are available.

jn:encode-for-roundtrip($items as item()*) as json-item()*

jn:encode-for-roundtrip($items as item()*, $options as object()) as json-
item()*

Calling the unary version of the function defaults the value of the second parameter ($options) to

        {
          "prefix" : "Q{http://jsoniq.org/roundtrip}"
          "serialization-parameters" : 
            <serialization-parameters xmlns="http://www.w3.org/2010/xslt-xquery-
serialization">
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              <omit-xml-declaration value="yes" />
            </serialization-parameters>
        }

$options("prefix") must be atomizable and castable to a string.

$options("serialization-parameters") must be a node.

Error jerr:JNTY0023 is raised if one of the above two type criteria is not met.

This function maps each item of the input sequence to a new item in the output sequence, preserving
order.

For convenience, the map is defined recursively from item() to item(), even though the signature of the
function expects JSON items in the output sequence. The map preserves JSON native atomic values
in general, however if such a value appears at the top-level in the input sequence, it is not treated as
such and is mapped to an object like any other atomic item.

It maps an object to an object with the same keys, the associated values being obtained by a recursive
call on the original values.

It maps an array to an array the members of which are obtained by a recursive call on the members of
the original array.

JSON native atomic values (of type exactly xs:double (except infinites and NaN), xs:decimal (except
integers), xs:integer, xs:string, xs:boolean or js:null) are mapped to themselves.

XML nodes are mapped to an object with two pairs:
• A pair named "[$prefix]type" (where [$prefix] is replaced with the value of the parameter $prefix) and

with the value "document-node()", "element()", "text()", "comment()" or "processing-instruction()",
depending on the node kind (note that if it is an attribute or namespace node, err:SENR0001 will
be raised by the step below).

• A pair named "[$prefix]value" (where [$prefix] is replaced with the value of $options("prefix"))
and whose value is a serialization of the XML node according to the XML output method and with
the serialization parameters specified by $options("serialization-parameters").

Non-native atomic values that are not qualified names (i.e., neither xs:QName nor xs:NOTATION nor
subtypes) are mapped to an object with two pairs:
• A pair named "[$prefix]type" (where [$prefix] is replaced with the value of the parameter $prefix) and

whose value is the EQName of the atomic type (The XSD namespace may be simply output with the
xs: prefix).

• A pair named "[$prefix]value" (where [$prefix] is replaced with the value of $options("prefix")
and whose value is the lexical representation of the atomic value.

Non-native atomic values that are qualified names (i.e., xs:QName or xs:NOTATION or subtypes) are
mapped to an object with two or three pairs:
• A pair named "[$prefix]type" (where [$prefix] is replaced with the value of the parameter $prefix) and

whose value is the EQName of the atomic type (The XSD namespace may be simply output with the
xs: prefix).

• A pair named "[$prefix]value" (where [$prefix] is replaced with the value of $options("prefix")
and whose value is the EQName corresponding to the qualified name (which includes namespace
and local name).

• A pair named "[$prefix]prefix" (where [$prefix] is replaced with the value of $options("prefix")
and whose value is the prefix of the qualified name (only if there is such a prefix).
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Example 6.5. Mapping non-JSON values
Query:

        {
          "serialized XML" :
            jn:encode-for-roundtrip(<para>
                 A pair named "[$prefix]value" (where [$prefix] is replaced with the
                 value of the parameter $prefix) and whose value is a serialization
                 of the XML node according to the XML output method and with the
                 serialization parameters specified by $param.
                 </para>)
        }
        

Result:

        {
          "serialized XML" : {
              "Q{http://jsoniq.org/roundtrip}type" : "node()",
              "Q{http://jsoniq.org/roundtrip}value" : "<para>
                 A pair named "[$prefix]value" (where [$prefix] is replaced with the
                 value of the parameter $prefix) and whose value is a serialization
                 of the XML node according to the XML output method and with the
                 serialization parameters specified by $param.
                 </para>"
          }
        }

Query:

        jn:encode-for-roundtrip({ "nan" : xs:double("NaN"),
                                  "inf" : xs:double("INF"),
                                  "date" : xs:date("1066-10-14"),
                                  "user" : hat:hatSize("M"),
                                  "QName" : xs:QName("jn:encode-for-roundtrip"),
                                  "EQName" : fn:QName("http://jsoniq.org/roundtrip",
 "value")
                                })

Result:

        {
          "nan" : {
            "Q{http://jsoniq.org/roundtrip}type" : "xs:double",
            "Q{http://jsoniq.org/roundtrip}value" : "NaN"
          },
          "inf" : {
            "Q{http://jsoniq.org/roundtrip}type" : "xs:double",
            "Q{http://jsoniq.org/roundtrip}value" : "INF"
          },
          "date" : {
            "Q{http://jsoniq.org/roundtrip}type" : "xs:date",
            "Q{http://jsoniq.org/roundtrip}value" : "1066-10-14"
          },
          "hat" : {
            "Q{http://jsoniq.org/roundtrip}type" : "Q{http://www.example.com/hat-
shop}hatSize",



Chapter 6. Builtin functions and operators

24

            "Q{http://jsoniq.org/roundtrip}value" : "M"
          },
          "QName" : { 
            "Q{http://jsoniq.org/roundtrip}type" : "xs:QName", 
            "Q{http://jsoniq.org/roundtrip}value" : "Q{http://jsoniq.org/functions}encode-
for-roundtrip", 
            "Q{http://jsoniq.org/roundtrip}prefix" : "jn" 
          },
          "EQName" : { 
            "Q{http://jsoniq.org/roundtrip}type" : "xs:QName", 
            "Q{http://jsoniq.org/roundtrip}value" : "Q{http://jsoniq.org/roundtrip}value" 
          }
        }

6.8. jn:is-null
This function returns true if the supplied item is the JSON null (of type js:null), false otherwise.

jn:is-null($item as item()) as xs:boolean

6.9. jn:json-doc
This function returns the JSON node associated with the supplied URI. It has the same semantics as
fn:doc, except that it returns an Object or an Array.

jn:json-doc($uri as xs:string?) as json-item()?

6.10. jn:keys
This function returns the keys of an object using the jdm:keys accessor in an implementation-
dependent order. The order in which the keys are returned must be stable within a snapshot.

jn:keys(object())

Example 6.6. Getting all keys in an object

          let $o := { "a" : 1, "b" : 2 }
          return jn:keys($o)
          
          returns one of:
          
          ("a", "b")
          ("b", "a")

Retrieving all Pairs from an Object:

Query:

            let $map := { "eyes" : "blue", "hair" : "fuchsia" }
            for $key in json:keys($map)
            return { $key : $map($key) }

Result:

            { "eyes" : "blue" }
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            { "hair" : "fuchsia" }

6.11. jn:members
This functions returns all values in an Array.

        declare function jn:members($i as array()) as item()* {
          for $k in 1 to jn:size($i)
          return $i($k)
        };

Example 6.7. Retrieving the members of an array
Query:

          let $planets :=  [ "mercury", "venus", "earth", "mars" ]
          return jn:members($planets)

Result:

mercury venus earth mars

6.12. jn:null
This function returns the JSON null.

jn:null() as js:null

6.13. jn:object
This function allows dynamic object construction by merging all its object parameters into a single
object with a so-called "simple object union". A simple object union creates a new object, the
pairs property of which is obtained by accumulating the pairs of all operand objects. An error
jerr:JNDY0003 is raised if two pairs with the same name are encountered.

jn:object(object()*) as object()

Example 6.8. Dynamically building an object
Query:

          let $object1 := { "Captain" : "Kirk" }
          let $object2 := { "First officer" : "Spock" }
          return jn:object($object1, $object2)

Result:

          {
            "Captain" : "Kirk",
            "First officer" : "Spock"
          }
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Query:

          jn:object(
            for $d at $i in ("Sunday",
                             "Monday",
                             "Tuesday",
                             "Wednesday",
                             "Thursday",
                             "Friday",
                             "Saturday" )
            return { $d : $i }
          )

Result:

          {
            "Sunday" : 1,
            "Monday" : 2,
            "Tuesday" : 3,
            "Wednesday" : 4,
            "Thursday" : 5,
            "Friday" : 6,
            "Saturday" : 7
          }

6.14. jn:parse-json
This function has the same semantics as fn:parse-xml(), except that it parses the string as JSON (not
XML), and returns an object or array (or a sequence thereof) rather than an XML document.

jn:parse-json($arg as xs:string?, $options as object()) as json-item()*

jn:parse-json($arg as xs:string?) as json-item()*

If $options("jsoniq-multiple-top-level-items") evaluates to the empty sequence, or the
second parameter is not specified, it is considered to be true.

If $options("jsoniq-multiple-top-level-items") is not of type xs:boolean, then
jerr:JNTY0020 is raised..

If $options("jsoniq-multiple-top-level-items") is true, then jn:parse-json recognizes and
parses sequences of objects and arrays, with no separation other than whitespaces.

If parsing is not successful, then jerr:JNDY0021 is raised. Parsing is considered in particular to be
non-successful if $options("jsoniq-multiple-top-level-items") is false and there is extra
content after parsing a single abject or array.

6.15. jn:size
This function returns the size of the supplied array using the jdm:size accessor.

jn:size(array())

Example 6.9. Retrieving the size of an array

          let $a := [1 to 10]
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          return jn:size($a)
      
          returns
      
          10

Retrieving all members of an Array:

Query:

            let $planets :=  [ "mercury", "venus", "earth", "mars" ]
            for $i in 1 to jn:size($planets)
            return $planets($i)

Result:

mercury venus earth mars

6.16. Changes to cast semantics
The semantics of casts is changed as follows.

No value of an atomic type different than js:null (or derived) can be cast to js:null. An error
err:XPTY0004 is raised instead.

A js:null can still be cast to xs:string or xs:untypedAtomic as specified in the XPath function
specification, which leads to its canonical representation "null".

6.17. Changes to value comparison and arithmetic
operation semantics
The semantics of value comparison and arithmetic operations is changed as follows.

After atomization, if one of the operands is the null atomic item, then it is handled as if it were the
empty sequence.

Example 6.10. Addition
Query

        null + 1

Result

        ()

6.18. Changes to general comparison semantics
The semantics of general comparison is changed as follows.

After atomization, atomic items of type null are handled as if they were the empty sequence, i.e., are
removed from each operand sequence.
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Example 6.11. Addition
Query

        (null, 2) = (1, 3)

Result

        false
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JSON updates
JSONiq introduces new update primitives for updating Objects and Arrays. Update primitives can be
generated with new JSONiq updating expressions.

An individual function may create an invalid JSON instance; however, an updating query must produce
a valid JSON instance once the entire query is evaluated, or an error is raised and the entire update
fails, leaving the instance in its original state.

7.1. JSON udpate primitives
The following new update primitives are introduced.

• jupd:insert-into-object($o as object(), $p as object())

Inserts all pairs of the object $p into the object $o.

• jupd:insert-into-array($a as array(), $i as xs:integer, $c as item()*)

Inserts all items in the sequence $c before position $i into the array $a.

• jupd:delete-from-object($o as object(), $s as xs:string*)

Removes the pairs the names of which appear in $s from the object $o.

• jupd:delete-from-array($a as array(), $i as xs:integer)

Removes the item at position $i from the array $a (causes all following items in the array to move
one position to the left).

• jupd:replace-in-array($a as array(), $i as xs:integer, $v as item())

Replaces the item at position $i in the array $a with the item $v (do nothing if $i is not comprised
between 1 and jdm:size($a)).

• jupd:replace-in-object($o as object(), $n as xs:string, $v as item())

Replaces the value of the pair named $n in the object $o with the item $v (do nothing if there is no
such pair).

• jupd:rename-in-object($o as object(), $n as xs:string, $p as xs:string)

Renames the pair originally named $n in the object $o as $p (do nothing if there is no such pair).

Update primitives within a PUL are applied with strict snapshot semantics. For examples, the positions
are resolved against the array before the updates. Names are resolved on the object before the
updates.

In the middle of a program, several PULs can be produced against the same snapshot. They are then
merged with upd:mergeUpdates, which is extended as follows.

• Several deletes on the same object are replaced with a unique delete on that object, with a list of all
selectors (names) to be deleted, where duplicates have been eliminated.

• Several deletes on the same array and selector (position) are replaced with a unique delete on that
array and with that selector.
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• Several inserts on the same array and selector (position) are equivalent to a unique insert on
that array and selector with the content of those original inserts appended in an implementation-
dependent order (like XQUF).

• Several inserts on the same object are equivalent to a unique insert where the objects containing
the pairs to insert are merged. An error jerr:JNUP0005 is raised if a collision occurs.

• Several replaces on the same object or array and with the same selector raise an error
jerr:JNUP0009.

• Several renames on the same object and with the same selector raise an error jerr:JNUP0010.

• If there is a replace and a delete on the same object or array and with the same selector, the
replace is omitted in the merged PUL.

• If there is a rename and a delete on the same object or array and with the same selector, the
rename is omitted in the merged PUL.

At the end of an updating program, the resulting PUL is applied with upd:applyUpdates, which is
extended as follows:

• First, before applying any update, each update primitive (except the jupd:insert-into-object
primitives, which do not have any target) locks onto its target by resolving the selector on the object
or array it updates. If the selector is resolved to the empty sequence, the update primitive is ignored
in step 2. After this operation, each of these update primitives will contain a reference to either the
pair (for an object) or the value (for an array) on or relatively to which it operates

• Then each update primitive is applied, using the target references that were resolved at step 1.
The order in which they are applied is not relevant and does not affect the final instance of the data
model. After applying all updates, an error jerr:JNUP0006 is raised upon pair name collision
within the same object.

7.2. Update syntax: new updating expressions
The following syntax is introduced for updates.

7.2.1. Deleting expressions

            JSONDeleteExpr ::= "delete" "json" PrimaryExpr ( "(" ExprSingle ")" )+ 

PrimaryExpr followed by all "(" ExprSingle ")" except the last one, is evaluated according to the
semantics of dynamic function calls. It must return a single object $o or a single array $a. Otherwise,
jerr:JNUP0008 is raised. After this evaluation, two cases can appear for interpreting the last "("
ExprSingle ")":

(for explanatory purposes, suboperands are replaced with a variable containing the result of their
evaluation)

• delete json $o($s)

$s is atomized and cast to xs:string (jerr:JNUP0007 is raised upon failure).

Creates the update primitive jupd:delete-from-object($o, $s). An error JNUP:0016 is
raised if $o does not contain a pair with the key $s.
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• delete json $a($i)

$i is atomized and cast to xs:integer (jerr:JNUP0007 is raised upon failure).

Creates the update primitive jupd:delete-from-array($a, $i). An error JNUP:0016 is
raised if $i is out of the range of the array $a.

Example 7.1. Deleting from an object and from an array

             delete json $o("foo")
             delete json $a(2)

Note:

If $o($s) or $a($i) resolves to an empty sequence, the produced update primitive will have no
effect.

7.2.2. Inserting expressions

            JSONInsertExpr ::= "insert" "json" ExprSingle "into" ExprSingle ("at" "position"
 ExprSingle)?
                             | "insert" "json" PairConstructor ("," Pair Constructor)* "into"
 ExprSingle

(for explanatory purposes, suboperands are replaced with a variable containing the result of their
evaluation)

The second variant corresponds to the insertion of a statically known number of pairs:

insert json "foo" : "bar", "bar" : "foo" into $o

is defined as being equivalent to:

insert json { "foo" : "bar", "bar" : "foo" } into $o

Inserting expressions are available in two flavors (object insertion, array insertion):

• insert json $p into $o

$o must be an object. Otherwise, jerr:JNUP0008 is raised.

$p must be a sequence of objects. Otherwise, jerr:JNUP0019 is raised.

$o is post-processed by invoking jn:object, which results in a single object containing all pairs to
insert. In particular, jerr:JNDY0003 is raised upon a pair collision.

Makes a copy $p and creates the update primitive jupd:insert-into-object($o, $p)

• insert json $c into $a at position $i

$a must be an array. Otherwise, jerr:JNUP0008 is raised.

$i is atomized and cast to xs:integer (jerr:JNUP0007 is raised upon failure).

Makes a copy of all items in $c and creates the update primitive jupd:insert-into-array($a,
$i, $c)
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Example 7.2. Inserting into an array or an object

              insert json (1, 2, 3) into $a at position 3
              insert json { "foo": 3, "bar":4 } into $o

7.2.3. Renaming expressions

            JSONRenameExpr ::= "rename" "json" PrimaryExpr  ( "(" ExprSingle ")" )+ "as"
 ExprSingle

(for explanatory purposes, suboperands are replaced with a variable containing the result of their
evaluation)

rename json $o($s) as $n

PrimaryExpr followed by all "(" ExprSingle ")" except the last one, is evaluated according to the
semantics of dynamic function calls. It must return a single object $o. Otherwise, jerr:JNUP0008 is
raised. After this evaluation, the last "(" ExprSingle ")" is interpreted as follows:

$s is atomized and cast to xs:string (jerr:JNUP0007 is raised upon failure).

Creates the update primitive jupd:rename-in-object($o, $s, $n). An error JNUP:0016 is
raised if $o does not contain a pair with the key $s.

Example 7.3. Renaming an object pair

              rename json $o("foo") as "bar"

7.2.4. Replacing expressions

            JSONReplaceExpr ::= "replace" "json" "value" "of" PrimaryExpr ( "(" ExprSingle
 ")" )+ "with" ExprSingle

PrimaryExpr followed by all "(" ExprSingle ")" except the last one, is evaluated according to the
semantics of dynamic function calls. It must return a single object $o or a single array $a. Otherwise,
jerr:JNUP0008 is raised. After this evaluation, two cases can appear for interpreting the last "("
ExprSingle ")":

(for explanatory purposes, suboperands are replaced with a variable containing the result of their
evaluation)

• replace json value of $o($s) with $c

$s is atomized and cast to xs:string (jerr:JNUP0007 is raised upon failure).

$c is postprocessed in the same way as values in a pair constructor, i.e., if $c is the empty
sequence, it is replaced with the atomic value null, and if it is a sequence of more than one item, an
array is created with all items in this sequence and in the same order. Ultimately, in all cases, $c will
be a single item.
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Makes a copy of $c and creates the update primitive jupd:replace-in-object($o, $s, $c).
An error JNUP:0016 is raised if $o does not contain a pair with the key $s.

• replace json value of $a($i) with $c

$i is atomized and cast to xs:integer (jerr:JNUP0007 is raised upon failure).

$c is postprocessed in the same way as values in a pair constructor, i.e., if $c is the empty
sequence, it is replaced with the atomic value null, and if it is a sequence of more than one item, an
array is created with all items in this sequence and in the same order. Ultimately, in all cases, $c will
be a single item.

Makes a copy of $c and creates the update primitive jupd:replace-in-array($a, $i, $c).
An error JNUP:0016 is raised if $i is out of the range of array $a.

Example 7.4. Replace a value in an object or in an array

              replace json value of $o("foo") with 5
              replace json value of $a(3) with 25

7.2.5. Appending expressions

            JSONAppendExpr ::= "append" "json" ExprSingle "into" ExprSingle

(for explanatory purposes, suboperands are replaced with a variable containing the result of their
evaluation)

append json $c into $a

$a must be an array. Otherwise, jerr:JNUP0008 is raised.

Creates the update primitive insert-into-array($a, $a()+1, $c)

Example 7.5. Appending values to an array

              append json (1,2) into $a
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Function library
This section defines a function library on top of JSONiq. These functions are not part of the JSONiq
core, because the latter is intended to be minimal.

8.1. libjn:accumulate
This function dynamically builds an object, like jn:object, except that it does not throw an error upon
pair collision. Instead, it accumulates them into an array.

        declare function libjn:accumulate($o as object()*) as object()
        {
          jn:object(
            let $all-keys :=
              for $object in $o
              return jn:keys($object)
            for $distinct-key := distinct-values($all-keys)
            let $values := $o($distinct-key)
            return
              if (count($values) eq 1)
              then { $distinct-key : $values }
              else { $distinct-key : [ $values ] }
          )
        };

8.2. libjn:descendant-objects
This function returns all Objects contained within a JSON item, regardless of depth.

        declare function libjn:descendant-objects($i as json-item()) as object()*
        {
          if ($i instance of object())
          then
            (
              $i,
              for $v in libjn:values($i)
              where $v instance of json-item()
              return libjn:descendant-objects($v)
            )
          else if ($i instance of array())
          then
            (
              for $v in libjn:members($i)
              where $v instance of json-item()
              return libjn:descendant-objects($v)
            )
          else
            ()
        };

8.3. libjn:descendant-pairs
This function returns all descendant pairs of an object.

        declare function libjn:descendant-pairs($o as object())
        {
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          for $k in jn:keys($o)
          return (
            { $k : $o($k) },
            if ($o($k) instance of object())
            then
              libjn:descendant-pairs($o($k))
            else ()
          )
        };

Example 8.1. Accessing all descendant pairs
For the following queries, assume the variable $o is bound to the following object.

         {
           "first" : 1,
           "second" : { 
              "first" : "a", 
              "second" : "b" 
           }
         }

Query:

libjn:descendant-pairs($o)

Result:

        { "first" : 1 },
        {
           "second" : { 
              "first" : "a", 
              "second" : "b" 
           }
         },
         { "first" : "a" },
         { "second" : "b" }

Example 8.2. Query all pairs with a given name.
Query:

jn:descendant-pairs($o)("first")

Result:

          { "first" : 1 },
          { "first" : "a" }

8.4. libjn:flatten
This function recursively "flattens" the array.

        declare function libjn:flatten($a as array()) as item()*
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        {
          for $value in libjn:values($a)
          return
            if ($value instance of array())
              then libjn:flatten($value)
            else
              $value
        };

8.5. libjn:intersect
This function returns the intersection of two objects, and aggregates values corresponding to the same
name into an array.

        declare function libjn:intersect($o as object()*)
        {
          jn:object(
            let $common-keys := jn:keys(head($o))[ every $object in tail($o)
                                                   satisfies jn:keys($object) = . ]
            for $key in $common-keys
            let $values := $o($key)
            return
              if (count($values) eq 1)
              then { $key : $values }
              else { $key : [ $values ] }
          )
        };

8.6. libjn:project
This function projects an object by filtering its pairs.

        declare function libjn:project($o as object(), $s as xs:string*) as object()
        {
          jn:object(
            for $key in functx:value-intersect($s, jn:keys($o))
            return { $key : $o($key) }
          )
        };

Example 8.3. Projecting an object
Query:

          let $o := {
            "Captain" : "Kirk",
            "First Officer" : "Spock",
            "Engineer" : "Scott"
            }
          return
          libjn:project($o, ("Captain", "First Officer"))

Result:

          {
          "Captain" : "Kirk",
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          "First Officer" : "Spock",
          }

Query:

        let $o := {
          "Captain" : "Kirk",
          "First Officer" : "Spock",
          "Engineer" : "Scott"
          }
          return
          libjn:project($o, "XQuery Evangelist")

Result:

          ()

8.7. libjn:values
This functions returns all values in an Object.

        declare function libjn:values($i as object()) as item()* {
          for $k in jn:keys($i)
          return $i($k)
        };
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Combining XML and JSON
JSONiq is designed to allow XML and JSON to be used in the same query.

The syntax of JSONiq allows JSON constructors to contain XML values, and allows JSON
constructors to occur in XML constructors. JSON does not support XML nodes or types, and XML
does not support Objects or Arrays, but JSONiq allows Objects and Arrays to contain XML nodes, and
defines rules for using JSONiq nodes in XML content expressions.

Example 9.1. XML in JSON
Both XML nodes and atomic values may occur in the values of Objects.

        {
          "element" : <mercury>Hg</mercury>,
          "atomic value" : xs:date("1896-01-24")
          "several dates" : [ xs:date("1066-10-14"), xs:date("1935-01-11"),
 xs:date("1989-11-09") ]
        }

XML nodes and atomic values may also appear in Arrays.

[ xs:date("1066-10-14"), <mercury>Hg</mercury>, "ice cream" ]

JSONiq does not allow XML nodes to contain Objects and Arrays. If an XQuery element content
sequence, the value of the enclosed expression of an attribute, or the value of the content expression
of a computed constructor contains an Object or Array, an error jerr:JNTY0011 is raised.

Example 9.2. Objects in XML Constructors
Objects can be indirectly used in the content expression of any XQuery constructor.

Query:

        let $object := { "x" : 10, "y" : 12 }
        let $x := $object("x")
        return <x>{ $x }</x>

An Array can also be used in the content expression.1:

        <svg><polygon stroke="blue" points="(jnlib:flatten([ [10,10], [20,10], [20,20],
 [10,20] ])}" /></svg>

Here is the result of the above query:

<svg><polygon stroke="blue" points="10 10 20 10 20 20 10 20" /></svg>

1 The data in this example is taken from an example on Stefan Goessner's JSONT site (http://goessner.net/articles/jsont/).

http://goessner.net/articles/jsont/
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JSON Serialization
JSONiq defines two new output methods: "JSON" and "JSON-XML-hybrid". The JSON output
method outputs guaranteed JSON (application/json) with the small exception that it may also output
a sequence of objects and arrays (as seems to be standard practice, for example, in REST APIs).
The JSON-XML-hybrid method allows serializing mixed sequences of JSON items and XML nodes for
convenience. The JSON-XML-hybrid method is the default output method.

10.1. New serialization parameters
One new serialization parameter is introduced:

• jsoniq-multiple-top-level-items (one of: "yes", "no"):

Specifies if multiple items are allowed. Default is "yes".

10.2. Changes to sequence normalization
The XQuery and XSLT serialization specification performs sequence normalization before serializing
an XDM instance. The result is a sequence of exactly one document node.

JSONiq extends sequence normalization as follows:

The final step of building a document node with all items as its children is only done for adjacent XML
nodes. JSON objects and arrays in the input sequence are left untouched.

This means that the final result of sequence normalization will be a sequence of objects, arrays and
document nodes.

10.3. The JSON output method

10.3.1. Serialization of a sequence of items
If the normalized sequence does not consist exclusively of JSON arrays and objects, an error
jerr:JNSE0014 is raised.

If jsoniq-multiple-top-level-items is set to "no" and the sequence to be serialized does not consist of a
single object or array, an error jerr:JNSE0012 is raised.

If jsoniq-multiple-top-level-items is set to "yes", then the JSON items in the sequence are serialized
one by one as specified below, in the same order and without any separating character (except
whitespaces, depending on the indent parameter).

10.3.2. Serialization of individual JSON values
This section specifies how JSON items as well as JSON atomic values are serialized.

• Object

An object is serialized as an opening curly brace {, followed by the comma-separated serializations
of all its pairs, followed by a closing curly brace.

A pair is serialized as the serialization of its name, followed by a colon, followed by the serialization
of its value.



Chapter 10. JSON Serialization

42

• Array

An array is serialized as an opening square brace, followed by the comma-separated serializations
of all its member values, followed by a closing square brace.

• xs:string

An atomic value of type xs:string is serialized between double quotes and with the escaping
specified in http://www.ietf.org/rfc/rfc4627.txt.

• xs:double, xs:float (except Nan, positive/negative infinity), xs:decimal or subtype

An atomic value of a numeric type (xs:double, xs:float, xs:decimal or subtype) is serialized
as its lexical representation, i.e., is cast to xs:string, not surrounded by quotes. This corresponds
to the JSON number notation.

• xs:boolean or subtype

An atomic value matching the type xs:boolean is serialized as true or false, not surrounded by
quotes.

• js:null or subtype

The atomic value null matching the type js:null is serialized as null, not surrounded by quotes.

• All other atomic values are output as if they were of value xs:string (i.e., as a JSON string).

• An error jerr:JNSE0014 is raised if an XML node or a function is encountered.

10.3.3. Influence of other serialization parameters upon the JSON
output method

10.3.3.1. JSON output method: the indent parameter
Like for the XML output method, the indent parameter controls if the serializer is allowed to add
extra whitespaces to make the output easier to read. If the indent parameter has the value "yes",
the serializer may output additional whitespaces characters outside of JSON literals. If the indent
parameter has the value "no", the serializer may not output any whitespaces outside of JSON literals.

If the indent parameter is set to yes, the algorithm for adding whitespaces is allowed to add them at
the following places, and only at these places:

• Between an object-opening curly brace and the first key.

• On either side of a key-value-separating colon.

• Before and after pair-separating commas in an object.

• Between the value of the last pair of an object and the object-closing curly brace.

• Between an array-opening square bracket and the first member.

• Before and after value-separating commas in an array.

• Between the last member of an array and the array-closing square bracket.

• Between two objects or arrays if multiple JSON items are serialized.
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In particular, no whitespaces may be added inside JSON literals (strings, numbers, booleans, nulls).

If the indent parameter is set to no, no whitespace may be output to any of the places mentioned
above.

10.3.3.2. JSON output method: the byte-order-mark parameter
The byte-order-mark parameter is applicable to the JSON output method and has the same semantics
as for the XML output method.

10.3.3.3. JSON output method: the use-character-maps parameter
The use-character-maps parameter is applicable to the JSON output method and has the same
semantics as for the XML output method.

Like for the XML output method, the result of serialization using the JSON output method is not
guaranteed to be well-formed JSON if character maps have been specified.

10.4. The JSON-XML-hybrid output method
This method serializes a sequence of items to a stream of objects, arrays, XML nodes and text as
follows:

• An object or array is serialized according to the JSON output method (the value of jsoniq-multiple-
top-level-items is irrelevant), with the exception that no error is raised if an XML node is found as a
value in an object or a member of an array. Instead, the XML node is serialized to a JSON string as
described below for document nodes.

• A document node is serialized according to the xml output method and the corresponding
serialization parameters (except that the parameters setting declaration and doctypes are ignored,
and no doctype or XML declaration is output).

• The item serialization outputs are not separated by any spaces in the final output (except if the
indent parameter is set, in which case the serializer is free to insert whitespaces).

10.5. Changes to ther other output methods
The other outputs methods (XML, HTML, XHTML, Text) are changed as follows: if the normalized
sequence does not consist of exactly one document node, then jerr:JNSE0022 is raised.
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Error codes
The JSONiq error codes are summarized here.

jerr:JNDY0003

It is a dynamic error if two pairs in an object constructor or in a simple object union have the same
name.

jerr:JNTY0004

Arrays and objects cannot be atomized. It is a type error to call fn:data on a sequence containing an
array or an object.

jerr:JNUP0005

It is a dynamic error if a pending update list contains two JSON insert update primitives on the same
object and pair name.

jerr:JNUP0006

It is a dynamic error if upd:applyUpdates causes an object to contain two pairs with the same name.

jerr:JNUP0007

It is a type error if, in an updating expression, an array selector cannot be cast to xs:integer or if an
object selector cannot be cast to xs:string.

jerr:JNUP0008

It is a dynamic error if the target of a JSON delete or JSON replace expression is not an array or an
object. It is a dynamic error if the target of a renaming expression is not an object. It is a dynamic
error if the target of an appending expression is not an array. It is a dynamic error if the target of
a position-inserting expression is not an array. It is a dynamic error if the target of a non-position-
inserting expression is not an object.

jerr:JNUP0009

It is a dynamic error if a pending update list contains two JSON replacing update primitives on the
same object or array, and with the same selector.

jerr:JNUP0010

It is a dynamic error if a pending update list contains two JSON renaming update primitives on the
same object and with the same selector.

jerr:JNTY0011

It is a type error if the content sequence in a node constructor or in an XQUF insert or replace update
expression contains an object or an array.

jerr:JNSE0012

It is a dynamic error to serialize something else than a unique JSON item with the JSON output
method if the jsoniq-multiple-top-level-items is set to no.

jerr:JNSE0014

It is a dynamic error to serialize a function, a node or a standalone atomic item with the JSON output
method.
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jerr:JNSE0015

It is a dynamic error to serialize a top-level item which is not a JSON item if the jsoniq-multiple-top-
level-items serialization parameter is not set to "array".

jerr:JNUP0016

It is a dynamic error if it is attempted to create a replace, delete or rename update primitive with a
selector that cannot be resolved against the target array or object.

jerr:JNTY0018

It is a type error if there is not exactly one supplied parameter for an object or array selector.

jerr:JNUP0019

It is a dynamic error if the content expression, in an object insert expression, does not evaluate to a
sequence of objects.

jerr:JNTY0020

It is a dynamic error if, when calling jn:parse-json, the option "jsoniq-multiple-top-level-items" is not a
boolean.

jerr:JNDY0021

It is a dynamic error if parsing a string to one or several objects or arrays is not successful, or if it
results in more than one item and "jsoniq-multiple-top-level-items" is false.

jerr:JNSE0022

It is a dynamic error if an object or array is encountered upon serializing as XML, XHTML, HTML or
Text.

jerr:JNTY0023

It is a dynamic error if, when calling jn:encode-for-roundtrip or jn:decode-from-roundtrip, the value of
the option "prefix" is not atomizable and castable to a string, or if the value of the option "serialization-
parameters" is not an element node.

jerr:JNTY0024

Arrays and objects do not have a string value. It is a type error to call fn:string on an array or an object.
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Grammar Summary

      PrimaryExpr ::=  -- everything so far --
        | ObjectConstructor
        | ArrayConstructor
      
      ObjectConstructor ::=  "{" ( PairConstructor ("," PairConstructor)* )? "}"
      
      PairConstructor ::=  ExprSingle ":" ExprSingle
      
      ArrayConstructor ::=  "[" Expr? "]"
      
      ExprSingle ::=  -- everything so far --
        | JSONDeleteExpr
        | JSONInsertExpr
        | JSONRenameExpr
        | JSONReplaceExpr
        | JSONAppendExpr
      
      JSONDeleteExpr ::= "delete" "json" PrimaryExpr ( "(" ExprSingle ")" )+
      
      JSONInsertExpr ::= "insert" "json" ExprSingle "into" ExprSingle
                         ("at" "position" ExprSingle)?
                       | "insert" "json" PairConstructor ("," Pair Constructor)*
                         "into" ExprSingle
      
      JSONRenameExpr ::= "rename" "json" PrimaryExpr  ( "(" ExprSingle ")" )+
                         "as" ExprSingle
      
      JSONReplaceExpr ::= "replace" "json" "value" "of"
                          PrimaryExpr ( "(" ExprSingle ")" )+
                          "with" ExprSingle
      
      JSONAppendExpr ::= "append" "json" ExprSingle "into" ExprSingle
      
      ItemType ::= -- everything so far --
        | JSONTest
        | StructuredItemTest

      JSONTest ::= 
          JSONItemTest
        | JSONObjectTest
        | JSONArrayTest

      StructuredItemTest ::= "structured-item" "(" ")"
      JSONItemTest ::= "json-item" "(" ")"
      JSONObjectTest ::= "object" "(" ")"
      JSONArrayTest ::= "array" "(" ")"
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Implementation in Zorba
The present specification was implemented in the Zorba XQuery engine, with the following differences:

• Zorba supports a specific simple object union syntax (for building objects with a dynamic number of
pairs): {| Expr? |} corresponds to jn:object(Expr?) in this specification.

• Zorba supports a specific accumulation syntax (for building objects with a dynamic number of pairs
without throwing errors upon pair collision): {[ Expr? ]} corresponds to jn:accumulate(Expr?) in this
specification.

• The empty objects syntax {} is not supported, because it collides with empty blocks in Zorba
Scripting. However, {| |} can be used instead (see above).

• Zorba supports collections and indices containing JSON items as part of its data definition
framework.

• Zorba ships some of the library functions in the jn: module (jn:members, jn:flatten). The others will
follow in the next release.
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Appendix A. Revision History
Revision
0.4.42

Thu Sep 27 2012 Ghislain Fourny
ghislain.fourny@28msec.com

The hybrid output method now serializes XML nodes that are found inside objects or arrays to
JSON strings.

Revision
0.4.41

Tue Sep 25 2012 Ghislain Fourny
ghislain.fourny@28msec.com

Extended fn:string to raise an error for JSON items. Added JNTY0024.
Made definition of roundtripping functions more precise (for the case where there is a top-level
item which is a JSON native value).

Revision
0.4.40

Mon Sep 24 2012 Ghislain Fourny
ghislain.fourny@28msec.com

Renamed JNTY0020 and added JNTY0023.
Changed default of encode-for-roundtrip to omit XML declaration.
Corrected signature of roundtripping functions to allow for full recursion.

Revision
0.4.39

Fri Sep 14 2012 Ghislain Fourny
ghislain.fourny@28msec.com

Qualified names are now treated specially in jn:encode-for-roundtrip and jn:decode-from-roundtrip.

Revision
0.4.38

Thu Sep 13 2012 Ghislain Fourny
ghislain.fourny@28msec.com

Further specified error handling for key (atomization error, cast error) in pair constructor.
Fixed appending expression syntax to be in sync with insert syntax.
Object and array selectors are now atomized and cast to xs:string and xs:integer respectively.
The alternate object insertion syntax supports several pairs.

Revision
0.4.37

Tue Sep 11 2012 Ghislain Fourny
ghislain.fourny@28msec.com

Fixed error code of jerr:JNSE0022.
Moved libjn:members to jn:members (builtin).
Corrected example query for jn:encode-for-roundtrip and excluded NaN/infinite from native JSON
mapping.

Revision
0.4.36

Mon Sep 10 2012 Ghislain Fourny
ghislain.fourny@28msec.com

Changed error code to err:XPTY0004 if a key in a pair constructor cannot be atomized and cast to
a string.
Further specified error-handling for jn:parse-json. Changed default to accepting multiple items.
Simplified semantics for null in comparison/arithmetics. Introduced jn:is-null().
Introduced a lightweight syntax for inserting a single pair into an object (optional curly braces).
Default output method is now JSON-XML-hybrid (also for fn:trace).

mailto:ghislain.fourny@28msec.com
mailto:ghislain.fourny@28msec.com
mailto:ghislain.fourny@28msec.com
mailto:ghislain.fourny@28msec.com
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mailto:ghislain.fourny@28msec.com
mailto:ghislain.fourny@28msec.com
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Made changes to sequence normalization orthogonal to the output method used. Introduced error
codes.

Revision
0.4.35

Fri Sep 07 2012 Ghislain Fourny
ghislain.fourny@28msec.com

The json insert syntax was simplified and relaxed.

Revision
0.4.34

Thu Sep 06 2012 Ghislain Fourny
ghislain.fourny@28msec.com

Relaxed condition that an expression computing a value (in a pair constructor, an insert expression
or a replace expression) must return a single item. If no item, null is used instead, if more than one
item, an array is built to wrap the items. Errors jerr:JNTY0002 and jerr:JNUP0017 disappear.
jn:parse-json-sequence was merged with jn:parse-json (using an object to transmit parameters).
jn:encode-for-roundtrip and jn:decode-from-roundtrip also now use an object to transmit
parameters.
A semantics is now specified for arithmetic operations involving null (null is returned). The
semantics of value and general comparison involving nulls was updated.

Revision
0.4.33

Tue Sep 04 2012 Ghislain Fourny
ghislain.fourny@28msec.com

Corrected typos. Capitalized JSON and XML in hybrid output method.
Introduced jn:parse-json-sequence to support roundtripping sequences.

Revision
0.4.32

Mon Sep 03 2012 Ghislain Fourny
ghislain.fourny@28msec.com

Split the serialization roundtripping facility into a much simpler specification of the JSON output
method and two functions in the builtin module. Only one serialization parameter (specifying
whether multiple items are allowed is left).
jerr:JNSE0013 disappears.

Revision
0.4.31

Fri Aug 31 2012 Ghislain Fourny
ghislain.fourny@28msec.com

Sequences beginning with an object or array now have an effective boolean value, which is true.
jsoniq-boolean-and-null-literals is set to "yes" by default.

Revision
0.4.30

Thu Aug 30 2012 Ghislain Fourny
ghislain.fourny@28msec.com

Significantly rewrote the serialization section to take feedback received into account: (i) some
serialization parameters were renamed (ii) If jsoniq-roundtrip-extensions is set to no, then non-
JSON atomic values are automatically serialized to the JSON literal that makes the most sense (iii)
the json-xml-hybrid output method was introduced, mostly meant as a default output method for an
engine for convenience.

Revision
0.4.29

Tue Aug 28 2012 Ghislain Fourny
ghislain.fourny@28msec.com
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Added function jn:null.
Specified semantics for casting to/from jn:null.
Specified semantics for value and general comparisons involving JSON nulls.

Revision
0.4.28

Wed Aug 15 2012 Ghislain Fourny
ghislain.fourny@28msec.com

Added namespace for library functions.

Revision
0.4.27

Mon Aug 13 2012 Ghislain Fourny
ghislain.fourny@28msec.com

Renamed libjn:accumulator-object-union as libjn:accumulate. Corrected some typos in library
function code. Completed paragraph on implementation.

Revision
0.4.26

Fri Aug 10 2012 Ghislain Fourny
ghislain.fourny@28msec.com

Corrected and moved a dynamic object construction example to lib:object().

Revision
0.4.25

Wed Aug 8 2012 Ghislain Fourny
ghislain.fourny@28msec.com

Added a chapter about the implementation in Zorba.

Revision
0.4.24

Tue Aug 7 2012 Ghislain Fourny
ghislain.fourny@28msec.com

Fixed array update grammar rules.

Revision
0.4.23

Thu Jul 31 2012 Ghislain Fourny
ghislain.fourny@28msec.com

Changed JNDY0018 to JNTY0018.
Added more details on JSONiq string support.

Revision
0.4.22

Thu Jul 24 2012 Ghislain Fourny
ghislain.fourny@28msec.com

Objects and arrays are no longer matching any function types.
Updated type hierarchy picture.

Revision 0-21 Thu Jul 24 2012 Ghislain Fourny
ghislain.fourny@28msec.com

Corrected typos (jn:null, object constructor grammar in grammar section, residual {| |}s).
Added update features in the introductive list.

Revision 0-20 Thu Jun 21 2012 Ghislain Fourny
ghislain.fourny@28msec.com
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Added an error code checking for single item for insert/replace expressions.
Corrected typos.
Changed JNTY0007 to JNUP0007 and JNTY0008 to JNUP0008.

Revision 0-19 Thu Jun 11 2012 Ghislain Fourny
ghislain.fourny@28msec.com

Added error code if the selector cannot be resolved when creating an update primitive.
Updated JSONiq value serialization examples to the right double lexical value of infinity.

Revision 0-18 Thu May 24 2012 Ghislain Fourny
ghislain.fourny@28msec.com

Pairs are no longer exposed as items. There are now just singleton objects (but the word pair is
still used in this spec for a string/value pair);
Update primitives are decoupled from a new update syntax;
Object and array selectors return values;
Dynamic invocation on sequence of functions/arrays/objects;
Minimalistic builtin functions. Still, some functions defined for convenience (relational algebra
projection, intersection, ...);
Atomization and EBV raise errors or objects and arrays;
There are only one serialization method: json with three new serialization parameters;
Boolean and null literals can be activated with an option;
Multiple items can be serialized according to serialization parameter settings.

Revision 0-17 Thu Dec 22 2011 Jonathan Robie
jonathan.robie@gmail.com

Eliminated Array Pairs.
Renamed "member accessors" => "member selectors"
Changed semantics of the empty member selector, which now returns all Objects at the top level
or below.
Changed signature of json:delete() to always require the Array or Object as a parameter. Pairs no
longer point to the Array or Object that contain them.
Changed namespaces used in the document. Functions and errors have separate namespaces.
Functions used to implement operators and JDM accessors are abstract, and have a prefix that is
not bound to a namespace.
Removed isnull() function - compare to null insteadl
Removed whitespace requirement for ":" in PairConstructor, require the operands of a
PairConstructor to be AdditiveExprs.
Specified that object lookup uses the codepoint collation.

Revision 0-16 Tue Oct 11 2011 Jonathan Robie
jonathan.robie@gmail.com

Eliminated typed-value() and string-value() accessors for Pair.
Redefined atomization to use unboxing; defined type value and string value in terms of unboxing.
Changed signatures of many functions to make them more precise.
Fixed "tuesday" query - result is now "day": "Monday".
Introduced "structured items" base class for nodes and JSON Items.
Added StructuredItemTest.
Removed string arguments from JSONPairTest, JSONObjectPairTest, JSONArrayPairTest.
Specified update primitives.

mailto:ghislain.fourny@28msec.com
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Made signatures of update primitives more precise.
Stated that NaN and Infinity are instances of xs:double.
Clarified order of results for () on Arrays.
Changed "unordered" to implementation-defined order.
Minor editorial changes.

Revision 0-15 Thu Sep 22 2011 Jonathan Robie
jonathan.robie@gmail.com

Pairs now have typed-values again. No other JSONiq Item does.
Unboxing pairs is now part of atomization.
In the XQ-- subset of JSONiq, atomizing a Pair is defined as unboxing it. The remaining steps of
atomization are irrelevant, because XML values do not occur.
Unboxing pairs is also done for the value expression of Array Constructors and Object
Constructors. These do not atomize.
The content expressions of element constructors unbox Pairs and flatten arrays. (In other content
expressions, atomization is done, so explicit unboxing is not needed.)
Removed dangling references to context items in two function descriptions.
Changed erroneous KindTest to ItemType in several sentences.
Added a footnote clarifying that the identity of JSON Item is used only in PULs.
Changed name of json() to json-doc()
Changed signature of json-doc(), parse-json() to return json-item()?
Put public functions in the json namespace.
Stated that string serialization uses JSON escape conventions.
Stated that serialization of XML as string content uses serialization parameters and standard
serialization.

Revision 0-14 Mon Sep 19 2011 Jonathan Robie
jonathan.robie@gmail.com

JSONiq Items no longer have typed values.
Atomization is now defined only for Pairs, which are now unboxed before atomization, then treated
as any other value.
In content sequences, Pairs are unboxed, Arrays are flattened, and Objects still raise errors.
Extra-grammatical constraint added: whitespace must occur before and after a ":".
Explicitly stated that a standalone Pair raises an error when serializing.
If a Pair occurs in the value expression of a Pair Constructor, it is unboxed.
Defined the flatten() function to flatten arrays recursively.
Defined serialization for json:null.

Revision 0-13 Fri Sep 2 2011 Jonathan Robie
jonathan.robie@gmail.com

Refers to XQ++ and XQ-- grammars on the JSONiq site.
Tutorial is now a separate document.
Data Model appendix is now part of the main text.
Member accessors are defined independently of dynamic function invocation.
Arrays have a typed value again.
Added type hierarchy diagram.
JSON Item tests are ItemTests, no longer KindTests.
Renamed node types and item tests for consistency, changing terminology in the text to match.
Added item tests for all JSON Item types.
Added isnull() function.
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Moved updates out of an appendix and into the main text.

Revision 0-12 Mon Aug 22 2011 Jonathan Robie
jonathan.robie@gmail.com

Neither Object nor Array have typed values now.
Coined the term "member accessors".
New section calls out semantics of Pair.
Filled in type signatures of functions, added size().
Added Group By queries to Sample Queries.
Moved Satellites query to Sample Queries.
General reorganization, editorial changes.

Revision 0-11 Fri Aug 12 2011 Jonathan Robie
jonathan.robie@gmail.com

Added updating functions, revised update example to use them.

Revision 0-10 Wed Aug 10 2011 Jonathan Robie
jonathan.robie@gmail.com

New representation of objects, arrays, pairs in the data model. No longer nodes or function items.
Changed representation of nulls.
Navigation primitives now return pairs, not values.

Revision 0-09 Tue Aug 9 2011 Jonathan Robie
jonathan.robie@gmail.com

Significantly changed data model. Pairs now serve as the container for values, in both Arrays and
Objects. PULs will now need to be defined for pairs, objects, or arrays, not at the level of a single
value.
Changed to new path syntax.

Revision 0-07 Fri Jul 15 2011 Jonathan Robie
jonathan.robie@gmail.com

Removed special case positional filters for arrays.
Removed special case conversion of sequences to arrays in object values.
Removed extraneous constraint for objects in insert before / after.

Revision 0-06 Thu Jul 14 2011 Jonathan Robie
jonathan.robie@gmail.com

Added status section to emphasize that we are in very early stages.
Changed positioning in the introduction.
Added an update example.
Added an appendix listing changes needed for the XQuery Update Facility.
Added navigation primitives; defined navigation functions in terms of these primitives.

Revision 0-05 Wed Jul 06 2011 Jonathan Robie
jonathan.robie@gmail.com
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Serialization now uses JSONiq values, with a type and a serialized string, for things that JSON can
not represent directly.
Changed the verb used in an example.

Revision 0-04 Tue Jul 05 2011 Jonathan Robie
jonathan.robie@gmail.com

Revised author list.
Added explicit JDM representation of nulls.
Changed definition of 'value()' - it now returns the empty sequence rather than a type error for
nodes that have no value, and the set of nodes for which it is defined has changed.
Added return type to times-ten() function, showed function call.
Removed superfluous space from svg example.
Changed definition of serialization.
Fixed stock holdings example.
Items are now copied into arrays or objects, rather than using references to nodes in existing
hierarchies.

Revision 0-03 Mon Jun 27 2011 Jonathan Robie
jonathan.robie@gmail.com

Removed references to XQ--, XQ++, which are not yet well specified.
Finished simple value nodes for XQuery atomic values.
Reworked typed value of nodes, added examples and further explanation to "Combining XML and
JSON".
General reorganization and rewriting of introduction.
Added "JSON views in middleware" example.
Added "JSON Arrays to HTML Tables" example.
Added "Transforming to SVG" example.
Added KindTests, with an example.
Added section on combining XML, JSON.
Added extended example to show ramifications of atomization.
Added superficial, hand-wavy section on serialization. Needs discussion / fleshing out.
Reorganized section on navigating JSON objects and arrays.

Revision 0-02 Fri Jun 24 2011 Jonathan Robie
jonathan.robie@gmail.com

Clarified datatypes used for numeric types.
Fixed typo in JSONPair grammar.
Added text and an example to clarify use of child axis for JSON Pair Nodes.
Added value() for pair nodes.
Added json() function, similar to XQuery's doc() function.
Added parse-json() function, similar to XQuery's parse-xml() function.
Started a section on combining XML and JSON. Not done yet.
Defined atomization for simple value nodes.

Revision 0-01 Thu Jun 23 2011 Jonathan Robie
jonathan.robie@gmail.com

Specified filter expressions for Array nodes.
Added XDM mapping, in an appendix.
Clarified typed-value, string-value for arrays and objects.
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NameTest no longer matches Pair Nodes. The differences between JSON names and XML names
caused problems because (1) the characters allowed in a NameTest and a JSON string differ,
and (2) an unprefixed name in a Nametest is in the default namespace, all JSON strings are in no
namespace.
Array constructors now allow empty arrays; Object constructors now allow empty objects.
Made JSONPair available as a primary expression.
Added Stellarium example to introduction.
Incorporated navigation functions based on this week's feedback.

Revision 0-00 Fri Jun 17 2011 Jonathan Robie
jonathan.robie@gmail.com

Imported spec into publican.
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