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Abstract

JSONiq is a query and processing language specifically designed for the popular JSON
data model. The main ideas behind JSONiq are based on lessons learnt in more than 30
years of relational query systems and more than 15 years of experience with designing
and implementing query languages for semi-structured data. As a result, JSONiq is an
expressive and highly optimizable language to query and update NoSQL stores. It enables
developers to leverage the same productive high-level language across a variety of NoSQL
products. This book gives a complete introduction to the JSONiq language. It does so
by giving examples for all types of expressions and functions. Those examples, can be
immediately used - because they work standalone - allowing the interested reader to start
diving into the language.
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Chapter 1. Introduction
NoSQL - Why Are Relational
Databases Not Good Enough?

Relational databases have existed for decades. The entity-relationship model is very
powerful and with it, it is possible to model almost any structured data. SQL is the widely
accepted standard for these databases. It supports the relational algebra operators like
join, project, select, filter.

In the last decade, several companies saw the amount of data they needed to store
and handle increase dramatically. They soon encountered problems scaling up and out.
In his foreword on the "MongoDB Definitive Guide," Jeremy Zawodny explained it
convincingly: once you add more replicas and shards, you realize you are stuck in the
original schema you designed unless you invest considerable effort.

In order to solve this issue, a new generation of data stores appeared. They often share
the same set of design principles:

• The lines of a relational table are replaced with hierarchical data (semi-structured data,
aka trees), while tables become collections of trees.

• These trees are primarily associated with and indexed by an ID or a key.

• Schemas are not mandatory, i.e., trees within a collection need not share the same
structure (heterogeneity).

• Some data stores see a tree as a kind of black box (key/value stores) while some other
data stores use XML (like eXist) and more recently JSON (like MongoDB) syntax
to represent trees.

These new technologies are often referred to as "NoSQL."

Why JSONiq?
format for the values (or trees) and a query language tailored for the data store.

JSONiq was developed with the idea that many data stores share the same design
principles (e.g., collections of trees) so that it should be possibly to query them in a
unified and portable way.
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JSONiq is a query and processing language specifically designed for the popular JSON
data model. The main ideas behind JSONiq are based on lessons learned in more than 30
years of relational query systems and more than 15 years of experience with designing
and implementing query languages for semi-structured data like XML and RDF.

The main source of inspiration behind JSONiq is XQuery, which has been proven so
far a successful and productive query language for semi-structured data (in particular
XML). JSONiq borrowed a large numbers of ideas from XQuery like the structure and
semantics of a FLWOR construct, the functional aspect of the language, the semantics of
comparisons in the face of data heterogeneity, the declarative, snapshot-based updates.
However, unlike XQuery, JSON is not concerned with the peculiarities of XML like
mixed content, ordered children, the confusion between attributes and elements, the
complexities of namespaces and QNames, or the complexities of XML Schema, and so
on.

The power of the XQuery's FLWOR construct and the functional aspect combined with
the simplicity of the JSON data model results in a clean, sleek, and easy to understand
data processing language. As a matter of fact, JSONiq is a language that can do more
than queries: it can describe powerful data processing programs from transformations,
selections, joins of heterogeneous data sets, data enrichment, information extraction,
information cleaning, and so on.

Technically, the main characteristics of JSONiq (and XQuery) are the following:

• It is a set-oriented language. While most programming languages are designed
to manipulate one object at a time, JSONiq is designed to process sets (actually,
sequences) of data objects.

• It is a functional language. A JSONiq program is an expression; the result of
the program is the result of the evaluation of the expression. Expressions have
fundamental role in the language: every language construct is an expression and
expressions are fully composable.

• It is a declarative language. A program specifies what is the result being calculated,
and does not specify low level algorithms like the sort algorithm. Neither does it
specify whether an algorithm is executed in main memory or is external; whether it
is executed on a single machine or parallelized on several machines; or what access
patterns (aka indexes) are being used during the evaluation of the program. Such
implementation decisions should be taken automatically by an optimizer, based on
the physical characteristics of the data and of the hardware environment -- just like
a traditional database would do. The language has been designed from day one with
optimizability in mind.
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• It is designed for nested, heterogeneous, semi-structured data. Data structures in
JSON can be nested with arbitrary depth, do not have a specific type pattern (i.e.
are heterogeneous), and may or may not have one or more schemas that describe
the data. Even in the case of a schema, such a schema can be open and/or simply
partially describe the data. Unlike SQL, which is designed to query tabular, flat,
homogeneous structures. JSONiq has been designed from scratch as a query for nested
and heterogeneous data.

How to Run the Queries in This
Book?

Our first implementation of JSONiq was done in the Zorba NoSQL processor, which
is developed jointly between Oracle, 28msec, and the FLWOR Foundation. The home
page is http://www.zorba.io/ and a sandbox is available on http://try.zorba.io/. You can
run most of the queries shown in the examples of this book in this sandbox (not the ones
accessing collections).

28msec provides a platform called 28.io, which is specifically tailored for executing
JSONiq queries against an existing MongoDB database. You can run all example queries
in the Try-It-Now sandbox at http://www.28.io/, in which the collections faq and answers
are prepopulated with lots of data and additional sample queries.

Acknowledgements
The design and implementation of JSONiq is a team effort involving Dana Florescu
(Oracle), Jonathan Robie (EMC), Matthias Brantner (28msec), Markos Zaharioudakis
(Oracle), Till Westmann (Oracle) and myself (28msec).

This book was carefully reviewed by Matthias Brantner and Federico Cavalieri
(28msec).

A significant part of the introduction ("Why JSONiq?") was written by Dana Florescu.
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Chapter 2. The JSON Syntax
The JSONiq query language was specifically designed for querying and processing
JSON.

As stated on its home page http://www.json.org/, JSON is a “ lightweight data-
interchange format. It is easy for humans to read and write. It is easy for machines to
parse and generate. ”

JSON itself is only about syntax: a string may or may not match the JSON grammar. If it
does, then it is well-formed JSON. The JSON syntax is made of the following building
blocks: objects, arrays, strings, numbers, booleans and nulls. Let us begin with a quick
overview of all these building blocks.

JSON Strings
Strings are double-quoted. To put it simply, they are sequences of Unicode characters
with absolutely no restriction:

"foo",
"What NoSQL solutions are out there?"
    

However, syntactically, some of these characters must be escaped with backslashes
(escape sequence). This includes double quotes, escaped as \" -- because otherwise they
could be confused with the end of a string -- and backslahes themselves, escaped as \\
-- because otherwise you would not know if you mean a backslash character, or if you
are escaping the following character.

"What \"NoSQL\" solutions are out there?"
    

Finally, all Unicode control characters (null, new line, form feed, delete...) are not
allowed directly and must be built with an escape sequence. Any Unicode character,
including control characters, can be built with \u followed by the four hexadecimal digits
that identify it within Unicode. The most frequent control characters even have their
own shortcuts: \n (new line), \t (tab), \r (carriage return), \b (backspace), \f (form feed).
The slash also can be obtained with \/, although it is fine too if it appears alone. This is
useful in JSON-hosting environments where slashes are special.
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"What \"NoSQL\" solutions are out there:\n"
"MapReduce\u000AMongoDB\n\u0085"
    

JSON Numbers
Numbers cover the entire decimal space. There is no range restriction. Although there is
no formal distinction in JSON, numbers can be grouped into three subcategories. These
subcategories play an important role in JSONiq.

• Integers, possibly with a negative sign and not beginning with a leading 0 (except 0
itself):

0
9
42
-96
123456789012345678901234567890123456789012345
        

• "Plain" decimals, with a dot, both followed and preceded by at least by one digit (no
leading dot):

0.3
9.6
42.2346902834
-96.01345023400
        

• Decimals in scientific notation, i.e., a plain decimal followed by an E (case does not
matter) and by a power of ten (an integer with an optional sign):

0.3e0
9.6E+24
42.2346902834e-2
-96.01345023400E-02345
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JSON Booleans
Booleans cover the two logical truth values true and false, unquoted. There is not much
more to say about them...

true
false
    

JSON Null
Null is a special value that can be used to denote the absence of value.

null
    

JSON Objects
Objects are unordered sets of key/value pairs. A key is any JSON string as described
above. A value is any JSON building block.

According to the JSON RFC, keys (the strings) should be unique within the same object
-- and JSONiq does consider them unique.

You can see in the following examples that values can be also nested objects or arrays.

{
"_id" : "511C7C5C9A277C22D138802D", 
"question_id" : 4419499, 
"last_edit_date" : "2012-12-17T00:02:31", 
"creation_date" : "2010-12-11T23:15:19", 
"last_activity_date" : "2012-12-17T00:02:31", 
"score" : 15, 
"accepted_answer_id" : 4421601, 
"title" : "MySQL and NoSQL: Help me to choose the right one", 
"tags" : [ "php", "mysql", "nosql", "cassandra" ], 
"view_count" : 3972, 
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"owner" : {
  "user_id" : 279538, 
  "display_name" : "cedivad", 
  "reputation" : 430, 
  "user_type" : "registered", 
  "profile_image" : "http://www.gravatar.com/avatar/b77f...", 
  "link" : "http://stackoverflow.com/users/279538/cedivad", 
  "accept_rate" : 74
}, 
"link" : "http://stackoverflow.com/questions/4419499/mys...", 
"is_answered" : true
}
    

In the NoSQL world, top-level JSON objects are often referred to as JSON documents.
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Chapter 3. The JSONiq Data
Model

Having a JSON document as pure syntax is not very useful in itself, except to send it
over a network or to store it in a document store of course. To make use of it in a database
or in other processing environments, you need to bring it to a higher level of abstraction
and give semantics to the building blocks. This is what a Data Model is for.

We now introduce the JSONiq data model.

Let us begin with some good news first: the JSON syntax that we have just introduced
is a subset of JSONiq. Concretely, this means that any of these syntactic JSON building
blocks can be copy-and-pasted, and executed as a JSONiq query. The output will be the
counterpart of this JSON building block in the Data Model. So, if you are familiar with
JSON, then you already know some JSONiq.

JSONiq Values: Items and
Sequences

In JSONiq, the JSON building blocks described in the former section, on a more abstract
level, are referred to as items. JSONiq manipulates sequences of these items. Hence, a
JSONiq value is a sequence of items. So, in particular, a JSONiq query returns sequences
of items. Actually, even inside a JSONiq query, sequences of items are passed around
between the JSONiq building blocks internal to a query (called expressions).

Let us copy-and-paste a JSON Object and execute it as JSONiq:

Example 3.1. A sequence of just one item.

{ "foo" : "bar" }
      

Result:
 {
   "foo" : "bar"
 }
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The above query generates a sequence of one item, an object item in this case. The result
displayed above is the output of this query when run with the Zorba query processor,
which is one of the JSONiq implementations.

Commas are all you need to begin building your own sequences. You can mix and match!

Example 3.2. A sequence of various items.

"foo", 2, true, { "foo", "bar" }, null, [ 1, 2, 3 ]
      

Result:
 "foo"
 2
 true
 "foo"
 "bar"
 null
 [ 1, 2, 3 ]

There are three golden rules about sequences that are useful to keep in mind.

Rule #1 [http://www.zorba-xquery.com/html/modules/w3c/xpath#-1]: Sequences are
flat and cannot be nested. This makes streaming possible, which is very powerful.

Example 3.3. Sequences are flat.

( ("foo", 2), ( (true, 4, null), 6 ) )
      

Result:
 "foo"
 2
 true
 4
 null
 6

Rule #2 [http://www.zorba-xquery.com/html/modules/w3c/xpath#-2]: A sequence can
be empty. The empty sequence can be constructed with empty parentheses.

http://www.zorba-xquery.com/html/modules/w3c/xpath#-1
http://www.zorba-xquery.com/html/modules/w3c/xpath#-1
http://www.zorba-xquery.com/html/modules/w3c/xpath#-2
http://www.zorba-xquery.com/html/modules/w3c/xpath#-2
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Example 3.4. The empty sequence.

()
      

Result:
 

Rule #3 [http://www.zorba-xquery.com/html/modules/w3c/xpath#-3]: A sequence of
just one item is considered the same as just this item. Whenever we say that an expression
returns or takes one item, we really mean that it takes a singleton sequence of one item.

Example 3.5. A sequence of one item.

("foo")
      

Result:
 "foo"

JSONiq classifies the items mentioned above in three categories:

• Objects: the counterparts of the syntactic JSON objects.

• Arrays: the counterparts of the syntactic JSON arrays.

• Atomics: the counterparts of JSON strings, JSON numbers, JSON booleans and JSON
nulls - but with a very rich type system which includes dates, for example.

Objects
An object represents a JSON object: an unordered collection of string/item pairs.

Each pair consists of an atomic of type string and of an item which can be in any category.

No two pairs have the same name. Because of this, the word field is also used to refer
to pairs.

Arrays
An array represents a JSON array: an ordered list of items -- items in any category.

http://www.zorba-xquery.com/html/modules/w3c/xpath#-3
http://www.zorba-xquery.com/html/modules/w3c/xpath#-3
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An array can be seen as a sequence that is wrapped in one single item. And since an
array is an item, arrays can nest -- like in JSON.

Atomics
An atomic is a non-structured value that is annotated with a type.

JSONiq defines many useful builtin atomic types. For now, let us introduce those that
have a JSON counterpart. Note that JSON numbers correspond to three different types
in JSONiq.

• string: all JSON strings.

• integer: all JSON numbers that are integers (no dot, no exponent), infinite range.

• decimal: all JSON numbers that are decimals (no exponent), infinite range.

• double: IEEE double-precision 64-bit floating point numbers (corresponds to JSON
numbers with an exponent).

• boolean: the JSON booleans true and false.

• null: the JSON null.

JSONiq also offers many other types of atomics. Here is a little appetizer that showcases
constructing a date and a duration (365 days), and adding them.

Example 3.6. Atomics with the types date and dayTimeDuration.

date("2013-06-21") + xs:dayTimeDuration("P365D")
      

Result:
 "2014-06-21"
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Chapter 4. The JSONiq Type
System

JSONiq manipulates semi-structured data: in general, JSONiq allows you, but does not
require you to specify types. So you have as much or as little type verification as you
wish.

Like in Java or C++, it is possible to create a variable with a given static type:

Example 4.1. Specifying a type.

let $x as integer := 16
return $x * $x
      

Result:
 256

Like in JavaScript, it is possible to create a variable without explicitly giving any static
type. JSONiq is still strongly typed, so that you will be told if there is a type inconsistency
or mismatch in your programs.

Example 4.2. Not specifying a type.

let $x := 16
return $x * $x
      

Result:
 256

Variables will be explained later more in details.

JSONiq supports types at the sequence level. They are called sequence types, and the
syntax for designing types is called the sequence type syntax. The type "integer" that was
shown above in a query matches singleton sequences of one atomic item of type integer.

Whenever you do not specify the type of a variable or the type signature of a function, the
most general type for any sequence of items, item*, is assumed. But it is not forbidden
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for the processor to be smart and warn you if it can detect that a type issue can arise
at runtime.

There are many JSONiq expressions (cast, instance of, ...) which perform type operations
and that make use of the sequence type syntax. In the remainder of this section, we
will introduce sequence types using an "instance of" expression that returns true or false
depending on whether or not the type on the right side is matched by the value on the
left side -- like in Java.

Example 4.3. The instance of operator.

16 instance of integer
      

Result:
 true

Item Types

Atomic Types
Atomic types are organized in a tree hierarchy.

JSONiq defines the following build-in types that have a direct relation with JSON:

• string: the value space is all strings made of Unicode characters.

All string literals build an atomic which matches string.

• integer: the value space is that of all mathematical integral numbers (N), with an
infinite range. This is a subtype of decimal, so that all integers also match the item
type decimal.

All integer literals build an atomic which matches integer.

• decimal: the value space is that of all mathematical decimal numbers (D), with an
infinite range.

All decimal literals build an atomic which matches decimal.

• double: the value space is that of all IEEE double-precision 64-bit floating point
numbers.
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All double literals build an atomic which matches double.

• boolean: the value space contains the booleans true and false.

All boolean literals build an atomic which matches boolean.

• null: the value space is a singleton and only contains null.

All null literals build an atomic which matches null.

• atomic: all atomic types.

All literals build an atomic which matches atomic.

Example 4.4. Atomic types

16 instance of integer,
16 instance of decimal,
16.6 instance of decimal,
16.6e10 instance of double,
"foo" instance of string,
true instance of boolean,
null instance of null,
"foo" instance of atomic
      

Result:
 true
 true
 true
 true
 true
 true
 true
 true

JSONiq also supports further atomic types, which were borrowed from XML Schema
1.1.

These datatypes are already used as a set of atomic datatypes by the other two semi-
structured data formats of the Web: XML and RDF, as well as by the corresponding
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query languages: XQuery and SPARQL, so it is natural for a complete JSON data model
to reuse them.

• Further number types: long, int, short, byte, float.

• Date or time types: date, dateTime, dateTimeStamp, gDay, gMonth, gMonthDay,
gYear, gYearMonth, time.

• Duration types: duration, dayTimeDuration, yearMonthDuration.

• Binary types: base64Binary, hexBinary.

• An URI type: anyURI.

Atomic items that have these builtin atomic types can only be built with a constructor
-- again similar to JavaScript.

Example 4.5. Further builtin atomic types.

date("2013-06-18") instance of date,
dateTime("2013-06-21T05:00:00Z") instance of dateTime,
time("05:00:00") instance of time,
long("1234567890123") instance of long
      

Result:
 true
 true
 true
 true

JSON Item Types : Object Types and Array
Types

All objects match the item type object as well as json-item.

All arrays match the item type array as well as json-item.

Atomics do not match json-item.

Example 4.6. Further builtin atomic types.
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{ "foo" : "bar" } instance of object,
{ "foo" : "bar" } instance of json-item,
{} instance of object,
[ 1, 2, 3, 4 ] instance of array,
[ 1, 2, 3, 4 ] instance of json-item
      

Result:
 true
 true
 true
 true
 true

The Most General Item Type.

All items match the item type item.

Example 4.7. The most general item type: item.

{ "foo" : "bar" } instance of item,
[ 1, 2, 3, 4 ] instance of item,
"foo" instance of item,
42 instance of item,
false instance of item,
null instance of item
      

Result:
 true
 true
 true
 true
 true
 true

Sequence Types
All sequences match the sequence type item*.
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Example 4.8. The most general sequence type: item*.

{ "foo" : "bar" } instance of item*,
() instance of item*,
([ 1, 2, 3 ], 2, { "foo" : "bar" }, 4)
    instance of item*
      

Result:
 true
 true
 true

But sequence types can be much more precise than that. In general, a sequence type is
made of an item type, as presented above, followed by an occurrence indicator among
the following:

• * stands for a sequence of any length (zero or more)

• + stands for a non-empty sequence (one or more)

• ? stands for an empty or a singleton sequence (zero or one)

• The absence of indicator stands for a singleton sequence (one).

Example 4.9. Further sequence types.

( { "foo" : "bar" } , {} ) instance of object*,
() instance of object*,
( [ 1, 2, 3 ] , {} ) instance of json-item+,
[ 1, 2, 3 ] instance of array?,
() instance of array?,
"foo" instance of string
      

Result:
 true
 true
 true
 true
 true
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 true

There is also a special type that matches only empty sequences, denoted () as well:

Example 4.10. Empty sequence type: ()

() instance of ()
      

Result:
 true
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Chapter 5. Construction of
Items

As we just saw, the items (objects, arrays, strings, ...) mentioned in the former section
are constructed exactly as they are constructed in JSON. In a way, any JSON building
block is also a well-formed JSONiq query which just "returns itself" (more precisely:
its counterpart in the JSONiq Data Model)!

Atomic Literals
String Literals

The syntax for creating strings is identical to that of JSON. No surprise here. JSON's
backslash escaping is supported, and like in JSON, double quotes are required and single
quotes are forbidden.

Example 5.1. String literals.

  "foo",
  "This is a line\nand this is a new line",
  "\u0001",
  "This is a nested \"quote\""
        

Result:
 "foo"
 "This is a line
and this is a new line"
 "&#x1;"
 "This is a nested "quote""

Number Literals.
The syntax for creating numbers is identical to that of JSON.

Example 5.2. Number literals (integer, decimal and double literals)
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42,
3.14,
-6.022E23
      

Result:
 42
 3.14
 -6.022E23

Well, not quite. Actually, JSONiq allows a more flexible superset. In particular:

• leading 0s are allowed

• a decimal literal can begin or end with a dot

• a number may begin with a + sign

Example 5.3. A more general literal syntax.

042,
.1415926535,
42.,
+6.022E23
      

Result:
 42
 0.1415926535
 42
 6.022E23

Remember that JSONiq distinguishes between integers (no dot, no scientific notation),
decimals (dot but no scientific notation), and doubles (scientific notation). As expected,
an integer literal creates an atomic of type integer, and so on. No surprises either.

Boolean and Null Literals
There is not much to say actually -- boolean literals build boolean atomics, the null literal
builds a null atomic, so no worries here, the world is in order. You might as well want
to move to the next section.
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Example 5.4. Boolean and null literals.

true,
false,
null
      

Result:
 true
 false
 null

Object Constructors
The syntax for creating objects is also identical to that of JSON. You can use for an
object key any string literal, and for an object value any literal, object constructor or
array constructor.

Example 5.5. Object constructors.

{},
{ "foo" : "bar" },
{ "foo" : [ 1, 2, 3, 4, 5, 6 ] },
{ "foo" : true, "bar" : false },
{ "this is a key" : { "value" : "a value" } }
      

Result:
 {
 }
 {
   "foo" : "bar"
 }
 {
   "foo" : [ 1, 2, 3, 4, 5, 6 ]
 }
 {
   "foo" : true,
   "bar" : false
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 }
 {
   "this is a key" : {
     "value" : "a value"
   }
 }

Again, JSONiq is more flexible here. Like in JavaScript, if your key is simple enough
(like alphanumerics, underscores, dashes, these kinds of things), you are welcome to
omit the quotes. The strings for which quotes are not mandatory are called unquoted
names. This class of strings can be used for unquoted keys, but also in later sections for
variable and function names, and for module aliases.

Example 5.6. Object constructors with unquoted keys.

{ foo : "bar" },
{ foo : [ 1, 2, 3, 4, 5, 6 ] },
{ foo : "bar", bar : "foo" },
{ "but you need the quotes here" : null }
    

Result:
 {
   "foo" : "bar"
 }
 {
   "foo" : [ 1, 2, 3, 4, 5, 6 ]
 }
 {
   "foo" : "bar",
   "bar" : "foo"
 }
 {
   "but you need the quotes here" : null
 }

Array Constructors
The syntax for creating arrays is identical to that of JSON (do you sense a growing
feeling that we are repeating ourselves? But it feels so good to say it): square brackets,
comma separated values.
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Example 5.7. Empty array constructors.

[],
[ 1, 2, 3, 4, 5, 6 ],
[ "foo", [ 3.14, "Go" ], { "foo" : "bar" }, true ]
      

Result:
 [  ]
 [ 1, 2, 3, 4, 5, 6 ]
 [ "foo", [ 3.14, "Go" ], { "foo" : "bar" }, t
rue ]

Square brackets are mandatory. Things can only be pushed so far.

Composing Constructors
Of course, JSONiq would not be very interesting if all you could do is copy and paste
JSON documents. So now is time to get to the meat.

Because JSONiq expressions are fully composable, in objects and arrays constructors,
you can put way more than just atomic literals, object constructors and array
constructors: you can put any JSONiq expression. An expression is the JSONiq building
block. You already know some (literals, constructors, comma, cast, instance of) and
plenty more will be introduced in the next part (arithmetics, logic, comparison, if-then-
else, try-catch, FLWORS that allow you to join, select, group, filter, project, stream in
windows, ...)

In order to illustrate composability, the following examples use a few of the many
operators you can use:

• "to" for creating sequences of consecutive integers,

• "||" for concatenating strings,

• "+" for adding numbers,

• "," for appending sequences (yes, you already know this one).

So here we go.

In an array, the operand expression inside the square bracket will evaluated to a sequence
of items, and these items will be copied and become members of the newly created array.
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Example 5.8. Composable array constructors.

[ 1 to 10 ],
[ "foo" || "bar", 1 to 3, 2 + 2 ]   
    

Result:
 [ 1, 2, 3, 4, 5, 6, 7, 8, 9, 10 ]
 [ "foobar", 1, 2, 3, 4 ]

In an object, the expression you use for the key must evaluate to an atomic - if it is not
a string, it will just get cast to it.

An error is raised if the key expression is not an atomic.

Example 5.9. Composable object keys.

  { "foo" || "bar" : true },
  { 1 + 1 : "foo" }
      

Result:
 {
   "foobar" : true
 }
 {
   "2" : "foo"
 }

And do not worry about the value expression: if it is empty, null will be used as a value,
and if it contains two items or more, they will be wrapped into an array.

Example 5.10. Composable object values.

  { "foo" : 1 + 1 },
  { "foo" : (), "bar" : (1, 2) }
      

Result:
 {



Composing Constructors

31

   "foo" : 2
 }
 {
   "foo" : null,
   "bar" : [ 1, 2 ]
 }

The {| |} constructor can be used to merge several objects.

Example 5.11. Merging object constructor.

  {| { "foo" : "bar" }, { "bar" : "foo" } |}
      

Result:
 {
   "foo" : "bar",
   "bar" : "foo"
 }

An error is raised if the operand expression does not evaluate to a sequence of objects.
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Chapter 6. Collections
Even though you can build your own JSON values with JSONiq by copying-and-pasting
JSON documents, most of the time, your JSON data will be in a collection.

We now introduce collections, because collections are perfect to illustrate the JSON
navigation syntax which will be introduced in the next section.

Collections are sequences of objects, identified by a name which is a string.

Adding or deleting collections from the set of known collections to a query processor,
and loading the data in a collection are implementation-dependent and outside of the
scope of this book.

We will just assume that there is a function named collection() that returns all objects
associated with the provided collection name.

Example 6.1. Getting all objects from a collection.

collection("one-object")
    

Result:
 {
   "question" : "What NoSQL technology should
 I use?"
 }

Collections Used Throughout This
Book

For illustrative purposes, we will assume that we have the following collections:

• collection("one-object")

{
  "question" : "What NoSQL technology should I use?"
}
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• collection("faq") - this is a collection of StackOverflow FAQs.

{
  "_id" : "511C7C5C9A277C22D138802D", 
  "question_id" : 4419499, 
  "last_edit_date" : "2012-12-17T00:02:31", 
  "creation_date" : "2010-12-11T23:15:19", 
  "last_activity_date" : "2012-12-17T00:02:31", 
  "score" : 15, 
  "accepted_answer_id" : 4421601, 
  "title" : "MySQL and NoSQL: Help me to choose the right one", 
  "tags" : [ "php", "mysql", "nosql", "cassandra" ], 
  "view_count" : 3972, 
  "owner" : {
    "user_id" : 279538, 
    "display_name" : "cedivad", 
    "reputation" : 430, 
    "user_type" : "registered", 
    "profile_image" : "http://www.gravatar.com/avatar/b77fadd2ba791...", 
    "link" : "http://stackoverflow.com/users/279538/cedivad", 
    "accept_rate" : 74
  }, 
  "link" : "http://stackoverflow.com/questions/4419499/mysql-and-n...", 
  "is_answered" : true
}
{
  "_id" : "511C7C5C9A277C22D138802F", 
  "question_id" : 282783, 
  "last_edit_date" : "2012-04-30T22:43:02", 
  "creation_date" : "2008-11-12T02:02:42", 
  "last_activity_date" : "2012-04-30T22:43:02", 
  "score" : 42, 
  "accepted_answer_id" : 282813, 
  "title" : "The Next-gen Databases", 
  "tags" : [ "sql", "database", "nosql", "non-relational-database" ], 
  "view_count" : 5266, 
  "owner" : {
    "user_id" : 3932, 
    "display_name" : "Randin", 
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    "reputation" : 585, 
    "user_type" : "registered", 
    "profile_image" : "http://www.gravatar.com/avatar/d9d7ba9c17d671d...", 
    "link" : "http://stackoverflow.com/users/3932/randin", 
    "accept_rate" : 100
  }, 
  "link" : "http://stackoverflow.com/questions/282783/the-next-gen-data...", 
  "is_answered" : true
}
...
          

• collection("answers") - this is a collection of StackOverflow answers (to the previous
FAQs).

{
  "_id" : "511C7C5D9A277C22D13880C3", 
  "question_id" : 37823, 
  "answer_id" : 37841, 
  "creation_date" : "2008-09-01T12:14:38", 
  "last_activity_date" : "2008-09-01T12:14:38", 
  "score" : 7, 
  "is_accepted" : false, 
  "owner" : {
    "user_id" : 2562, 
    "display_name" : "Ubiguchi", 
    "reputation" : 1871, 
    "user_type" : "registered", 
    "profile_image" : "http://www.gravatar.com/avatar/00b87a917ec763c0c...", 
    "link" : "http://stackoverflow.com/users/2562/ubiguchi"
  }
}
{
  "_id" : "511C7C5D9A277C22D13880C4", 
  "question_id" : 37823, 
  "answer_id" : 37844, 
  "creation_date" : "2008-09-01T12:16:40", 
  "last_activity_date" : "2008-09-01T12:16:40", 
  "score" : 4, 
  "is_accepted" : false, 
  "owner" : {
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    "user_id" : 2974, 
    "display_name" : "Rob Wells", 
    "reputation" : 17543, 
    "user_type" : "registered", 
    "profile_image" : "http://www.gravatar.com/avatar/8769281d99f8fe9c2...", 
    "link" : "http://stackoverflow.com/users/2974/rob-wells", 
    "accept_rate" : 94
  }
}
{
  "_id" : "511C7C5F9A277C22D1388211", 
  "question_id" : 4419499, 
  "answer_id" : 4419542, 
  "creation_date" : "2010-12-11T23:24:21", 
  "last_edit_date" : 1292112046, 
  "last_activity_date" : "2010-12-12T00:00:46", 
  "score" : 17, 
  "is_accepted" : false, 
  "owner" : {
    "user_id" : 236047, 
    "display_name" : "Victor Nicollet", 
    "reputation" : 14632, 
    "user_type" : "registered", 
    "profile_image" : "http://www.gravatar.com/avatar/e083220ac33b47364d3...", 
    "link" : "http://stackoverflow.com/users/236047/victor-nicollet", 
    "accept_rate" : 95
  }
}
{
  "_id" : "511C7C5F9A277C22D1388212", 
  "question_id" : 4419499, 
  "answer_id" : 4419578, 
  "creation_date" : "2010-12-11T23:30:42", 
  "last_activity_date" : "2010-12-11T23:30:42", 
  "score" : 1, 
  "is_accepted" : false, 
  "owner" : {
    "user_id" : 510782, 
    "display_name" : "descent89", 
    "reputation" : 33, 
    "user_type" : "registered", 
    "profile_image" : "http://www.gravatar.com/avatar/d15c0949f7e051e9d86...", 
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    "link" : "http://stackoverflow.com/users/510782/descent89"
  }
}
...
        

Many queries in this book can be directly input into 28.io's try-it-now sandbox, as these
collections are preloaded (this is real-world data).
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Chapter 7. JSON Navigation
Like in JavaScript or SQL or Java, it is possible to navigate through data.

JSONiq supports:

• Looking up the value of a field (given its string key) in an object.

• Looking up the item at a given position (integer) in an array.

• Extracing all members of an array as a sequence of items.

• Filtering items from a sequence, retaining only the items that match a given criterium.

Object Navigation
The simplest way to navigate an object is similar to JavaScript. This will work as soon as
you do not push it too much: alphanumerical characters, dashes, underscores. The rule
for unquoted names is similar to keys in object constructions, and to variable names.
The empty sequence is returned if no key is found with the specified name.

Example 7.1. Object lookup.

{
  "question" : "What NoSQL technology should I use?"
}.question,
{
  "question" : "What NoSQL technology should I use?"
}.answer
      

Result:
 "What NoSQL technology should I use?"

Since JSONiq expressions are composable, you can also use any expression for the left-
hand side. You might need parentheses depending on the precedence.

Example 7.2. Lookup on a single-object collection.
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collection("one-object").question
      

Result:
 "What NoSQL technology should I use?"

The dot operator does an implicit mapping on the left-hand-side, i.e., it applies the lookup
in turn on each item. Lookup on any item which is not an object (arrays and atomics)
results in the empty sequence.

Example 7.3. Object lookup with an iteration on several objects.

({ "foo" : "bar" }, { "foo" : "bar2" } ).foo,
{ "ids" : collection("faq").question_id }
      

Result:
 "bar"
 "bar2"
 {
   "ids" : [ 4419499, 282783 ]
 }

Example 7.4. Object lookup on non-objects.

"foo".foo,
({
  "question" : "What NoSQL technology should I use?"
},
 [ "question", "answer" ],
 { "question" : "answer" },
 "question").question
      

Result:
 "What NoSQL technology should I use?"
 "answer"

Of course, unquoted keys will not work for strings that are not unquoted names, e.g.,
if the field contains a dot or begins with a digit. Then you will need quotes. If you
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use a more general expression on the right-hand side of the dot, it must always have
parentheses.

Example 7.5. Quotes and parentheses for object lookup.

{
  "my question" : "What NoSQL technology should I use?"
}."my question",
{
  "my question" : "What NoSQL technology should I use?"
}.("my " || "question")
      

Result:
 "What NoSQL technology should I use?"
 "What NoSQL technology should I use?"

The value returned by the right-hand side expression is cast to string. An error is raised
upon failure. This value may be the empty sequence, in which case the object lookup
also returns the empty sequence.

Example 7.6. Object lookup with a nested expression.

{
  "question" : "What NoSQL technology should I use?"
}.(),
{
  "1" : "What NoSQL technology should I use?"
}.(1),
{
  "1" : "What NoSQL technology should I use?"
}."1"
      

Result:
 "What NoSQL technology should I use?"
 "What NoSQL technology should I use?"

Variables, or a context item reference, do not need parentheses. Variables are introduced
later, but here is a sneak peek:
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Example 7.7. Object lookup with a variable.

let $field := "my " || "question"
return { 
  "my question" : "What technology should I use?"
}.$field
      

Result:
 "What technology should I use?"

Array Unboxing
The items in an array (which is an item) can be extracted as a sequence of items with
the [] postfix operator.

The argument must be (a singleton sequence of) one array or the empty sequence (in
which case the empty sequence is returned as well.

Example 7.8. Array unboxing.

[
  "What NoSQL technology should I use?",
  "What is the bottleneck in MapReduce?"
][],

for $array in collection("faq").tags
return $array[],

()[]
      

Result:
 An error was raised: invalid expression: synt
ax error, unexpected "]"

Sequence Filtering
A predicate allows filtering a sequence, keeping only items that fulfill it.
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The predicate is evaluated once for each item in the left-hand-side sequence. The
predicate expression can use $$ to refer to the item being processed, called the context
item.

If the predicate evaluates to an integer, it is matched against the item position in the left-
hand side sequence automatically.

Example 7.9. Predicate expression for picking an item at a given
position.

(1 to 10)[5],
(
  "What NoSQL technology should I use?",
  "What is the bottleneck in MapReduce?"
)[2]
      

Result:
 5
 "What is the bottleneck in MapReduce?"

Otherwise, the result of the predicate is converted to a boolean.

All items for which the converted predicate result evaluates to true are then output.

Example 7.10. Predicate expression for filtering.

(
  "What NoSQL technology should I use?",
  "What is the bottleneck in MapReduce?"
)[contains($$, "NoSQL")],

(1 to 10)[$$ mod 2 eq 0]
      

Result:
 "What NoSQL technology should I use?"
 2
 4
 6
 8
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 10

Array Navigation
Once you know how to unbox an array and to filter a sequence, array lookup comes for
free. It feels very much like opening a box of Swiss chocolate and then picking your
favorite:

• Unbox the array with [].

• Pick the $i-th item in the sequence using a predicate with an integer [$i].

Example 7.11. Array lookup.

[ "question", "answer" ][][2],
{ 
  questions: [
    "What NoSQL technology should I use?", 
    { "faq" : "What is the bottleneck in MapReduce?" }
  ]
}.questions[][2].faq
      

Result:
 An error was raised: invalid expression: synt
ax error, unexpected "]"
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Chapter 8. Basic Operations
Now that we have shown how expressions can be composed, we can begin the tour of
all JSONiq expressions. First, we introduce the most basic operations.

Construction of Sequences

Comma Operator
The comma allows you to concatenate two sequences, or even single items. This operator
has the lowest precedence of all, so do not forget the parentheses if you would like to
change this.

Also, the comma operator is associative -- in particular, sequences do not nest. You need
to use arrays in order to nest.

Example 8.1. Comma.

1, 2, 3, 4, 5,
{ "foo" : "bar" }, [ 1  ],
1 + 1, 2 + 2,
(1, 2, (3, 4), 5)
      

Result:
 1
 2
 3
 4
 5
 {
   "foo" : "bar"
 }
 [ 1 ]
 2
 4
 1
 2
 3
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 4
 5

Range Operator
With the binary operator "to", you can generate larger sequences with just two integer
operands.

If the left operand is greater than the right operand, an empty sequence is returned.

If an operand evaluates to something else than a single integer, an error is raised. There
is one exception with the empty sequence, which behaves in a particular way for most
operations (see below).

Example 8.2. Range operator.

1 to 10,
10 to 1
      

Result:
 1
 2
 3
 4
 5
 6
 7
 8
 9
 10

Parenthesized Expressions
Expressions take precedence on one another. For example, addition has a higher
precedence than the comma. Parentheses allow you to change precedence.

If the parentheses are empty, the empty sequence is produced.

Example 8.3. Empty sequence.
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( 2 + 3 ) * 5,
()
      

Result:
 25

Arithmetics
JSONiq supports the basic four operations, as well integer division and modulo. You
should keep in mind that, as is the case in most programming languages, multiplicative
operations have precedence over additive operations. Parentheses can override it, as
explained above.

Example 8.4. Basic arithmetic operations with precedence override.

1 * ( 2 + 3 ) + 7 idiv 2 - (-8) mod 2
      

Result:
 8

Dates, times and durations are also supported in a natural way.

Example 8.5. Using basic operations with dates.

date("2013-05-01") - date("2013-04-02")
      

Result:
 "P29D"

If any of the operands is a sequence of more than one item, an error is raised.

If any of the operands is not a number, a date, a time or a duration, or if the operands
are not compatible (say a number and a time), an error is raised.

Do not worry if the two operands do not have the same number type, JSONiq will do
the adequate conversions.
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Example 8.6. Basic arithmetic operations with different, but
compatible number types

2.3e4 + 5
      

Result:
 23005

String Concatenation
Two strings or more can be concatenated using the concatenation operator. An empty
sequence is treated like an empty string.

Example 8.7. String concatenation.

"Captain" || " " || "Kirk",
"Captain" || () || "Kirk"
      

Result:
 "Captain Kirk"
 "CaptainKirk"

Comparison
Atomics can be compared with the usual six comparison operators (equality, non-
equality, lower-than, greater-than, lower-or-equal, greater-or-equal), and with the same
two-letter symbols as in MongoDB.

Comparison is only possible between two compatible types, otherwise, an error is raised.

Example 8.8. Equality comparison.

1 + 1 eq 2,
1 lt 2
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Result:
 true
 true

null can be compared for equality or inequality to anything - it is only equal to itself so
that false is returned when comparing if for equality with any non-null atomic. True is
returned when comparing it with non-equality with any non-null atomic.

Example 8.9. Equality and non-equality comparison with null.

1 eq null,
"foo" ne null,
null eq null
      

Result:
 false
 true
 true

For ordering operators (lt, le, gt, ge), null is considered the smallest possible value (like
in JavaScript).

Example 8.10. Ordering comparison with null.

null lt 1
      

Result:
 true

Comparisons and logic operators are fundamental for a query language and for
the implementation of a query processor as they impact query optimization greatly.
The current comparison semantics for them is carefully chosen to have the right
characteristics as to enable optimization.

Empty Sequence Behavior
In range operations, arithmetics and comparisons, if an operand is the empty sequence,
then the result is the empty sequence as well.
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Example 8.11. The empty sequence used in basic operations.

() to 10,
1 to (),
1 + (),
() eq 1,
() ge 10
      

Result:
 

Logic
JSONiq logics support is based on two-valued logics: there is just true and false and
nothing else.

Non-boolean operands get automatically converted to either true or false, or an error is
raised. The boolean() function performs a manual conversion. The rules for conversion
were designed in such a way that it feels "natural". Here they are:

• An empty sequence is converted to false.

• A singleton sequence of one null is converted to false.

• A singleton sequence of one string is converted to true except the empty string which
is converted to false.

• A singleton sequence of one number is converted to true except zero or NaN which
are converted to false.

• Operand singleton sequences of any other item cannot be converted and an error is
raised.

• Operand sequences of more than one item cannot be converted and an error is raised.

Example 8.12. Conversion to booleans.

{
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  "empty-sequence" : boolean(()),
  "null" : boolean(null),
  "non-empty-string" : boolean("foo"),
  "empty-string" : boolean(""),
  "zero" : boolean(0),
  "not-zero" : boolean(1e42)
},
null and "foo"
      

Result:
 {
   "empty-sequence" : false,
   "null" : false,
   "non-empty-string" : true,
   "empty-string" : false,
   "zero" : false,
   "not-zero" : true
 }
 false

Propositional Logic

JSONiq supports the most famous three boolean operations: conjunction, disjunction,
and negation. Negation has the highest precedence, then conjunction, then disjunction.
Comparisons have a higher precedence than all logical operations. Parentheses can
override.

Example 8.13. Logics with booleans.

true and ( true or not true ),
1 + 1 eq 2 or not 1 + 1 eq 3
        

Result:
 true
 true

A sequence with more than one item, or singleton objects and arrays cannot be converted
to a boolean. An error is raised if it is attempted.
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Unlike in C++ or Java, you cannot rely on the order of evaluation of the operands of a
boolean operation. The following query may return true or may raise an error.

Example 8.14. Non-determinism in presence of errors.

true or (1 div 0)
        

Result:
 true

First-Order Logic (Quantified Variables)
Given a sequence, it is possible to perform universal or existential quantification on a
predicate.

Example 8.15. Universal and existential quantifiers.

every $i in 1 to 10
  satisfies $i gt 0,
some $i in -5 to 5, $j in 1 to 10
  satisfies $i eq $j
        

Result:
 true
 true

Variables can be annotated with a type. If no type is specified, item* is assumed. If the
type does not match, an error is raised.

Example 8.16. Existential quantifier with type checking.

some $i as integer in -5 to 5, $j as integer
  in 1 to 10
  satisfies $i eq $j
        

Result:
 true
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Builtin Functions
The syntax for function calls is similar to many other languages.

Like in C++ (namespaces) or Java (packages, classes), functions live in namespaces that
are URIs.

Although it is possible to fully write the name of a function, namespace included, it can
be cumbersome. Hence, for convenience, a namespace can be associated with a prefix
that acts as a shortcut.

JSONiq supports three sorts of functions:

• Builtin functions: these have no prefix and can be called without any import.

• Local functions: they are defined in the prolog, to be used in the main query. They
have the prefix local:. Chapter 12, Prologs describes how to define your own local
functions.

• Imported functions: they are defined in a library module. They have the prefix
corresponding to the alias to which the imported module has been bound to.
Chapter 13, Modules describes how to define your own modules.

For now, we only introduce how to call builtin functions -- these are the simplest, since
they do not need any prefix or explicit namespace.

Example 8.17. A builtin function call.

keys({ "foo" : "bar", "bar" : "foo" }),
concat("foo", "bar")
   

Result:
 "foo"
 "bar"
 "foobar"

Some builtin functions perform aggregation and are particularly convenient:

Example 8.18. A builtin function call.
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sum(1 to 100),
avg(1 to 100),
count( (1 to 100)[ $$ mod 5 eq 0 ] )
   

Result:
 5050
 50.5
 20

Remember that JSONiq is a strongly typed language. Functions have signatures, for
example sum() expects a sequence of numbers. An error is raised if the actual types do
not match the expected types.

Also, calling a function with two parameters is different from calling a function with
one parameter that is a sequence with two items. For the latter, extra parentheses must
be added to make sure that the sequence is taken as a single parameter.

Example 8.19. Calling a function with a sequence.

count((1, 2, 3, 4))
   

Result:
 4
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Chapter 9. Control Flow
Expressions

JSONiq supports control flow expressions such as conditional expressions (if then else),
switch, and typeswitch. At least the first two should be familiar to any programmer.

Conditional Expressions
A conditional expression allows you to pick the one or the other value depending on a
boolean value.

Example 9.1. A conditional expression.

if (1 + 1 eq 2)
then { "foo" : "yes" }
else { "foo" : "false" }
      

Result:
 {
   "foo" : "yes"
 }

The behavior of the expression inside the if is similar to that of logical operations (two-
valued logics), meaning that non-boolean values get converted to a boolean. The exists()
builtin function can be useful to know if a sequence is empty or not.

Example 9.2. A conditional expression.

if (null) then { "foo" : "yes" }
          else { "foo" : "no" },
if (1) then { "foo" : "yes" }
       else { "foo" : "no" },
if (0) then { "foo" : "yes" }
       else { "foo" : "no" },
if ("foo") then { "foo" : "yes" }
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           else { "foo" : "no" },
if ("") then { "foo" : "yes" }
        else { "foo" : "no" },
if (()) then { "foo" : "yes" }
        else { "foo" : "no" },
if (exists(collection("faq"))) then { "foo" : "yes" }
                               else { "foo" : "no" }
        

Result:
 {
   "foo" : "no"
 }
 {
   "foo" : "yes"
 }
 {
   "foo" : "no"
 }
 {
   "foo" : "yes"
 }
 {
   "foo" : "no"
 }
 {
   "foo" : "no"
 }
 {
   "foo" : "yes"
 }

Note that the else clause is mandatory (but can be the empty sequence)

Example 9.3. A conditional expression.

if (1+1 eq 2) then { "foo" : "yes" } else ()
        

Result:
 {
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   "foo" : "yes"
 }

Switch expressions
Switch expressions are very similar to C++. A switch expression evaluates the
expression inside the switch. If it is an atomic, it compares it in turn to the provided
atomic values (with the semantics of the eq operator) and returns the value associated
with the first matching case clause.

Example 9.4. A switch expression.

switch ("foo")
case "bar" return "foo"
case "foo" return "bar"
default return "none"
        

Result:
 "bar"

If the provided value is not an atomic, an error is raised (this is also similar to C++).

If the value does not match any of the expected values, the default is used.

Note that the default clause is mandatory (but can be the empty sequence)

Example 9.5. A switch expression.

switch ("no-match")
case "bar" return "foo"
case "foo" return "bar"
default return "none"
        

Result:
 "none"

The case clauses support composability of expressions as well - an opportunity to remind
you about the precedence of the comma.
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Example 9.6. A switch expression.

switch (2)
case 1 + 1 return "foo"
case 2 + 2 return "bar"
default return "none",
switch (true)
case 1 + 1 eq 2 return "1 + 1 is 2"
case 2 + 2 eq 5 return "2 + 2 is 5"
default return "none of the above is true"
        

Result:
 "foo"
 "1 + 1 is 2"

Try-Catch expressions
A try catch expression evaluates the expression inside the try block and returns its
resulting value.

However, if an error is raised during execution, the catch clause is evaluated and its
result value returned.

Example 9.7. A try catch expression.

try { 1 div 0 } catch * { "Caught!" } 
      

Result:
 "Caught!"

Only errors raised within the lexical scope of the try block are caught.

Example 9.8. An error outside of a try-catch expression.

let $x := 1 div 0
return try { $x }
catch * { "Caught!" } 
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Result:
 An error was raised: division by zero

Errors that are detected statically within the try block, for example syntax errors, are
still reported statically.

Note that this applies also if the engine is capable of detecting a type error statically,
while another engine might only discover it at runtime and catch it. You should keep
this in mind, and only use try-catch expressions as a safety net.

Example 9.9. A try catch expression with a syntax error.

try { x } catch * { "Caught!" } 
      

Result:
 An error was raised: invalid expression: synt
ax error, a path expression cannot begin with
 an axis step

Example 9.10. A try catch expression with a type error.

try { "foo" + "bar" } catch * { "Caught!" }
      

Result:
 "Caught!"
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Chapter 10. FLWOR
Expressions

FLWOR expressions are probably the most powerful JSONiq construct and correspond
to SQL's SELECT-FROM-WHERE statements, but they are more general and more
flexible. In particular, clauses can almost appear in any order (apart that it must begin
with a for or let clause, and end with a return clause).

Here is a bit of theory on how it works.

A clause binds values to some variables according to its own semantics, possibly several
times. Each time, a tuple of variable bindings (mapping variable names to sequences)
is passed on to the next clause.

This goes all the way down, until the return clause. The return clause is eventually
evaluated for each tuple of variable bindings, resulting in a sequence of items for each
tuple. It is not to be confused with Java or C++ return statements, as it does not exit or
break the loop.

These sequences of items are concatenated, in the order of the incoming tuples, and the
obtained sequence is returned by the FLWOR expression.

We are now giving practical examples with a hint on how it maps to SQL -- but first,
we need to introduce variable syntax.

Variables
Values can be bound to variables within a certain scope. Variable references always
begin with a dollar sign: $foo.

Variables are immutables, but variable bindings can be hidden with a binding to a
variable with the same name.

Variables can be declared by FLWOR expressions as shown in this chapter, but also as
global variables or in typeswitch expressions as will be shown later.

There is a special variable which is called the context item and which is denoted with $
$. You already saw it in the section called “Sequence Filtering”.



For Clauses

64

For Clauses
For clauses allow iteration on a sequence.

For each incoming tuple, the expression in the for clause is evaluated to a sequence.
Each item in this sequence is in turn bound to the for variable. A tuple is hence produced
for each incoming tuple, and for each item in the sequence produced by the for clause
for this tuple.

For example, the following for clause:

for $x in 1 to 3
    

produces the following stream of tuples (note how JSON syntax is so convenient that it
can be used to represent these tuples):

{ "$x" : 1 }
{ "$x" : 2 }
{ "$x" : 3 }
    

The order in which items are bound by the for clause can be relaxed with unordered
expressions, as described later in this section.

The following query, using a for and a return clause, is the counterpart of SQL's
"SELECT display_name FROM answers". $x is bound in turn to each item in the
answers collection.

Example 10.1. A for clause.

for $x in collection("answers")
return $x.owner.display_name
      

Result:
 "Ubiguchi"
 "Rob Wells"
 "Victor Nicollet"
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 "descent89"

For clause expressions are composable, there can be several of them.

Example 10.2. Two for clauses.

for $x in ( 1, 2, 3 )
for $y in ( 1, 2, 3 )
return 10 * $x + $y
      

Result:
 11
 12
 13
 21
 22
 23
 31
 32
 33

Example 10.3. A for clause with two variables.

for $x in ( 1, 2, 3 ), $y in ( 1, 2, 3 )
return 10 * $x + $y
      

Result:
 11
 12
 13
 21
 22
 23
 31
 32
 33

A for variable is visible to subsequent bindings.
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Example 10.4. Two for clauses.

for $x in ( [ 1, 2, 3 ],
            [ 4, 5, 6 ],
            [ 7, 8, 9 ] ),
    $y in $x()
return $y,
for $x in collection("faq"),
    $y in $x.tags()
return {
  "id" : $x.question_id,
  "tag" : $y
}
      

Result:
 1
 2
 3
 4
 5
 6
 7
 8
 9
 {
   "id" : 4419499,
   "tag" : "php"
 }
 {
   "id" : 4419499,
   "tag" : "mysql"
 }
 {
   "id" : 4419499,
   "tag" : "nosql"
 }
 {
   "id" : 4419499,
   "tag" : "cassandra"
 }



For Clauses

67

 {
   "id" : 282783,
   "tag" : "sql"
 }
 {
   "id" : 282783,
   "tag" : "database"
 }
 {
   "id" : 282783,
   "tag" : "nosql"
 }
 {
   "id" : 282783,
   "tag" : "non-relational-database"
 }

It is also possible to bind the position of the current item in the sequence to a variable.

Example 10.5. A for clause with a position variable.

for $x at $position in collection("answers")
return {
  "old id" : $x.answer_id,
  "new id" : $position
}
        

Result:
 {
   "old id" : 37841,
   "new id" : 1
 }
 {
   "old id" : 37844,
   "new id" : 2
 }
 {
   "old id" : 4419542,
   "new id" : 3
 }
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 {
   "old id" : 4419578,
   "new id" : 4
 }

JSONiq supports joins. For example, the counterpart of "SELECT q.title AS question,
q.question_id FROM faq q JOIN answers a ON q.question_id = a.question_id" is:

Example 10.6. A regular join.

for $question in collection("faq"),
    $answer in collection("answers")
    [ $$.question_id eq $question.question_id ]
return { "question" : $question.title,
         "answer score" : $answer.score }
        

Result:
 {
   "question" : "MySQL and NoSQL: Help me to 
choose the right one",
   "answer score" : 17
 }
 {
   "question" : "MySQL and NoSQL: Help me to 
choose the right one",
   "answer score" : 1
 }

Note how JSONiq handles semi-structured data in a flexible way.

Outer joins are also possible with "allowing empty", i.e., output will also be produced
if there is no matching answer for a question. The following query is the counterpart of
"SELECT q.title AS question, q.question_id FROM faq q LEFT JOIN answers a ON
q.question_id = a.question_id".

Example 10.7. An outer join.

for $question in collection("faq"),
    $answer allowing empty in collection("answers")
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    [ $$.question_id eq $question.question_id ]
return { "question" : $question.title,
         "answer score" : $answer.score }
        

Result:
 {
   "question" : "MySQL and NoSQL: Help me to 
choose the right one",
   "answer score" : 17
 }
 {
   "question" : "MySQL and NoSQL: Help me to 
choose the right one",
   "answer score" : 1
 }
 {
   "question" : "The Next-gen Databases",
   "answer score" : null
 }

Where Clauses
Where clauses are used for filtering.

For each incoming tuple, the expression in the where clause is evaluated to a boolean
(possibly converting an atomic to a boolean). If this boolean is true, the tuple is
forwarded to the next clause, otherwise it is dropped.

The following query corresponds to "SELECT q.title as question, q.question_id as id
FROM faq WHERE CONTAINS(question, 'NoSQL')".

Example 10.8. A where clause.

for $question in collection("faq")
where contains($question.title, "NoSQL")
return {
  "question" : $question.title,
  "id" : $question.question_id
}
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Result:
 {
   "question" : "MySQL and NoSQL: Help me to 
choose the right one",
   "id" : 4419499
 }

JSONiq can do joins with where clauses, too:

Example 10.9. A join with a where clause.

for $question in collection("faq"),
    $answer in collection("answers")
where $question.question_id eq $answer.question_id
return {
  "question" : $question.title,
  "answer score" : $answer.score
}
        

Result:
 {
   "question" : "MySQL and NoSQL: Help me to 
choose the right one",
   "answer score" : 17
 }
 {
   "question" : "MySQL and NoSQL: Help me to 
choose the right one",
   "answer score" : 1
 }

Order Clauses
Order clauses are for reordering tuples.

For each incoming tuple, the expression in the where clause is evaluated to an atomic.
The tuples are then sorted based on the atomics they are associated with, and then
forwarded to the next clause.

Like for ordering comparisons, null values are always considered the smallest.
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The following query is the counterpart of SQL's "SELECT a.display_name, a.score
FROM answers a ORDER BY a.display_name".

Example 10.10. An order by clause.

for $answer in collection("answers")
order by $answer.owner.display_name
return {
  "owner" : $answer.owner.display_name,
  "score" : $answer.score
}
      

Result:
 {
   "owner" : "Rob Wells",
   "score" : 4
 }
 {
   "owner" : "Ubiguchi",
   "score" : 7
 }
 {
   "owner" : "Victor Nicollet",
   "score" : 17
 }
 {
   "owner" : "descent89",
   "score" : 1
 }

Multiple sorting criteria can be given - they are treated with the semantics of a
lexicographic order, that is, incoming tuples are first sorted according to the first
criterion, and in case of equality the second criterion is used, etc.

Example 10.11. An order by clause with two criteria.

for $answer in collection("answers")
order by $answer.owner.display_name,
         $answer.score
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return {
  "owner" : $answer.owner.display_name,
  "score" : $answer.score
}
      

Result:
 {
   "owner" : "Rob Wells",
   "score" : 4
 }
 {
   "owner" : "Ubiguchi",
   "score" : 7
 }
 {
   "owner" : "Victor Nicollet",
   "score" : 17
 }
 {
   "owner" : "descent89",
   "score" : 1
 }

For each criterion, it can be specified whether the order is ascending or descending.
Empty sequences are allowed and it can be chosen whether to put them first (even before
null) or last (even after null).

Example 10.12. An order by clause with ordering options.

for $answer in collection("answers")
order by $answer.owner.display_name
             descending empty greatest,
         $answer.score ascending
return {
  "owner" : $answer.owner.display_name,
  "score" : $answer.score
}
      

Result:
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 {
   "owner" : "descent89",
   "score" : 1
 }
 {
   "owner" : "Victor Nicollet",
   "score" : 17
 }
 {
   "owner" : "Ubiguchi",
   "score" : 7
 }
 {
   "owner" : "Rob Wells",
   "score" : 4
 }

An error is raised if the expression does not evaluate to an atomic or to the empty
sequence.

Group Clauses
Grouping is also supported, like in SQL.

For each incoming tuple, the expression in the group clause is evaluated to an atomic.
The value of this atomic is called a grouping key. The incoming tuples are then grouped
according to the grouping key -- one group for each value of the grouping key.

For each group, a tuple is output, in which the grouping variable is bound to the group's
key.

Example 10.13. A group by clause.

for $answer in collection("answers")
group by $question := $answer.question_id
return { "question" : $question }
      

Result:
 {
   "question" : 4419499
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 }
 {
   "question" : 37823
 }

As for each other (non-grouping) variable, the original values of the variable within one
group are all concatenated into a single sequence, which is bound to this variable in the
output tuple for this group. Aggregations can be done on these variables.

The following query is equivalent to "SELECT question_id, COUNT(*) FROM answers
GROUP BY question_id".

Example 10.14. A group by clause using count aggregation.

for $answer in collection("answers")
group by $question := $answer.question_id
return {
  "question" : $question,
  "count" : count($answer)
}
      

Result:
 {
   "question" : 4419499,
   "count" : 2
 }
 {
   "question" : 37823,
   "count" : 2
 }

The following query is equivalent to "SELECT question_id, AVG(score) FROM
answers GROUP BY question_id".

Example 10.15. A group by clause using average aggregation.

for $answer in collection("answers")
group by $question := $answer.question_id
return {
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  "question" : $question,
  "average score" : avg($answer.score)
}
      

Result:
 {
   "question" : 4419499,
   "average score" : 9
 }
 {
   "question" : 37823,
   "average score" : 5.5
 }

JSONiq's group by is more flexible than SQL and is fully composable.

Example 10.16. A group by clause with a nested expression.

for $answer in collection("answers")
group by $question := $answer.question_id
return {
  "question" : $question,
  "scores" : [ $answer.score ]
}
      

Result:
 {
   "question" : 4419499,
   "scores" : [ 17, 1 ]
 }
 {
   "question" : 37823,
   "scores" : [ 7, 4 ]
 }

Unlike SQL, JSONiq does not need a having clause, because a where clause works
perfectly after grouping as well.

The following query is the counterpart of "SELECT question_id, COUNT(*) FROM
answers GROUP BY question_id HAVING COUNT(*) > 1"
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Example 10.17. A group by clause with a post-grouping condition.

for $answer in collection("answers")
group by $question := $answer.question_id
where count($answer) gt 1
return {
  "question" : $question,
  "count" : count($answer)
}
      

Result:
 {
   "question" : 4419499,
   "count" : 2
 }
 {
   "question" : 37823,
   "count" : 2
 }

Let Clauses
Let bindings can be used to define aliases for any sequence, for convenience.

For each incoming tuple, the expression in the let clause is evaluated to a sequence. A
binding is added from this sequence to the let variable in each tuple. A tuple is hence
produced for each incoming tuple.

Example 10.18. A let clause.

for $answer in collection("answers")
let $qid := $answer.question_id
group by $question := $qid
let $count := count($answer)
where $count gt 1
return {
  "question" : $question,
  "count" : $count
}
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Result:
 {
   "question" : 4419499,
   "count" : 2
 }
 {
   "question" : 37823,
   "count" : 2
 }

Note that it is perfectly fine to reuse a variable name and hide a variable binding.

Example 10.19. A let clause reusing the same variable name.

for $answer in collection("answers")
let $qid := $answer.question_id
group by $qid
let $count := count($answer)
where $count gt 1
let $count := size(
  collection("faq")
    [ $$.question_id eq $qid ].tags
)
return {
  "question" : collection("faq")
      [$$.question_id eq $qid].title,
  "count" : $count
}
      

Result:
 An error was raised: empty-sequence() can not
 be promoted to parameter type array() of fun
ction size()

Count Clauses
For each incoming tuple, a binding from the position of this tuple in the tuple stream to
the count variable is added. The new tuple is then forwarded to the next clause.
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Example 10.20. A count clause.

for $question in collection("faq")
order by size($question.tags)
count $count
return {
  "id" : $count,
  "faq" : $question.title
}
      

Result:
 {
   "id" : 1,
   "faq" : "MySQL and NoSQL: Help me to choos
e the right one"
 }
 {
   "id" : 2,
   "faq" : "The Next-gen Databases"
 }

Map Operator
JSONiq provides a shortcut for a for-return construct, automatically binding each item
in the left-hand-side sequence to the context item.

Example 10.21. A simple map.

(1 to 10) ! ($$ * 2)
      

Result:
 2
 4
 6
 8
 10
 12
 14
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 16
 18
 20

Example 10.22. An equivalent query.

for $i in 1 to 10
return $i * 2
      

Result:
 2
 4
 6
 8
 10
 12
 14
 16
 18
 20

Composing FLWOR Expressions
Like all other expressions, FLWOR expressions can be composed. In the following
example, a FLWOR is nested in an existential quantifier, nested in a FLWOR, nested in
a function call, nested in a FLWOR, nested in an array constructor:

Example 10.23. Nested FLWORs.

[
  for $answer in collection("answers")
  let $oid := $answer.owner.user_id
  where count(
    for $question in collection("faq")
    where
      some $other-answer
      in collection("answers")
         [$$.question_id eq $question.question_id
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          and
          $$.owner.user_id eq $oid]
      satisfies
        $other-answer.score gt $answer.score
     return $question
  ) ge 2
  return $answer.owner.display_name
]
      

Result:
 [  ]

Ordered and Unordered
Expressions

By default, the order in which a for clause binds its items is important.

This behaviour can be relaxed in order give the optimizer more leeway. An unordered
expression relaxes ordering by for clauses within its operand scope:

Example 10.24. An unordered expression.

unordered {
  for $answer in collection("answers")
  where $answer.score ge 4
  return $answer
}
      

Result:
 {
   "_id" : "511C7C5D9A277C22D13880C3",
   "question_id" : 37823,
   "answer_id" : 37841,
   "creation_date" : "2008-09-01T12:14:38",
   "last_activity_date" : "2008-09-01T12:14:3
8",
   "score" : 7,
   "is_accepted" : false,
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   "owner" : {
     "user_id" : 2562,
     "display_name" : "Ubiguchi",
     "reputation" : 1871,
     "user_type" : "registered",
     "profile_image" : "http://www.gravatar.c
om/avatar/00b87a917ec763c0c051dc6b8c06f402?d=
identicon&amp;r=PG",
     "link" : "http://stackoverflow.com/users
/2562/ubiguchi"
   }
 }
 {
   "_id" : "511C7C5D9A277C22D13880C4",
   "question_id" : 37823,
   "answer_id" : 37844,
   "creation_date" : "2008-09-01T12:16:40",
   "last_activity_date" : "2008-09-01T12:16:4
0",
   "score" : 4,
   "is_accepted" : false,
   "owner" : {
     "user_id" : 2974,
     "display_name" : "Rob Wells",
     "reputation" : 17543,
     "user_type" : "registered",
     "profile_image" : "http://www.gravatar.c
om/avatar/8769281d99f8fe9c208fd6a926c383d1?d=
identicon&amp;r=PG",
     "link" : "http://stackoverflow.com/users
/2974/rob-wells",
     "accept_rate" : 94
   }
 }
 {
   "_id" : "511C7C5F9A277C22D1388211",
   "question_id" : 4419499,
   "answer_id" : 4419542,
   "creation_date" : "2010-12-11T23:24:21",
   "last_edit_date" : 1292112046,
   "last_activity_date" : "2010-12-12T00:00:4
6",
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   "score" : 17,
   "is_accepted" : false,
   "owner" : {
     "user_id" : 236047,
     "display_name" : "Victor Nicollet",
     "reputation" : 14632,
     "user_type" : "registered",
     "profile_image" : "http://www.gravatar.c
om/avatar/e083220ac33b47364d345eac8f017919?d=
identicon&amp;r=PG",
     "link" : "http://stackoverflow.com/users
/236047/victor-nicollet",
     "accept_rate" : 95
   }
 }

An ordered expression can be used to reactivate ordering behaviour in a subscope.

Example 10.25. An ordered expression.

unordered {
  for $question in collection("faq")
  where exists(
    ordered {
      for $answer at $i in collection("answers")
      where $i eq 5
      where $answer.question_id
          eq $question.question_id
      return $answer
    }
  )
  return $question
}
      

Result:
 



83

Chapter 11. Expressions
Dealing with Types

We have already introduced the sequence type syntax. It is now time to introduce the
expressions that deal with types.

Instance-of Expressions
A quick glimpse on this expression was already given. An instance expression can be
used to tell whether a JSONiq value matches a given sequence type, like in Java.

Example 11.1. Instance of expression.

1 instance of integer,
1 instance of string,
"foo" instance of string,
{ "foo" : "bar" } instance of object,
({ "foo" : "bar" }, { "bar" : "foo" })
    instance of json-item+,
[ 1, 2, 3 ] instance of array?,
() instance of ()
      

Result:
 true
 false
 true
 true
 true
 true
 true

Treat Expressions
A treat expression just forwards its operand value, but only after checking that a JSONiq
value matches a given sequence type. If it is not the case, an error is raised.
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Example 11.2. Treat as expression.

1 treat as integer,
"foo" treat as string,
{ "foo" : "bar" } treat as object,
({ "foo" : "bar" }, { "bar" : "foo" })
    treat as json-item+,
[ 1, 2, 3 ] treat as array?,
() treat as ()
      

Result:
 1
 "foo"
 {
   "foo" : "bar"
 }
 {
   "foo" : "bar"
 }
 {
   "bar" : "foo"
 }
 [ 1, 2, 3 ]

Example 11.3. Treat as expression (failing).

1 treat as string
      

Result:
 An error was raised: "xs:integer" cannot be t
reated as type xs:string

Castable Expressions
A castable expression checks whether a JSONiq value can be cast to a given atomic type
and returns true or false accordingly. It can be used before actually casting to that type.

The question mark allows for an empty sequence.
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Example 11.4. Castable as expression.

"1" castable as integer,
"foo" castable as integer,
"2013-04-02" castable as date,
() castable as date,
("2013-04-02", "2013-04-03") castable as date,
() castable as date?
      

Result:
 true
 false
 true
 false
 false
 true

Cast Expressions
A cast expression casts a (single) JSONiq value to a given atomic type. The resulting
value is annotated with this type.

Also here, the question mark allows for an empty sequence. An error is raised if the cast
is unsuccessful.

Example 11.5. Cast as expression.

"1" cast as integer,
"2013-04-02" cast as date,
() cast as date?,
"2013-04-02" cast as date?
      

Result:
 1
 "2013-04-02"
 "2013-04-02"
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Example 11.6. Cast as expression (failing).

("2013-04-02", "2013-04-03") cast as date,
"foo" cast as integer,
() cast as date
      

Result:
 An error was raised: sequence of more than on
e item can not be cast to type with quantifie
r '1' or '?'

Typeswitch Expressions
A typeswitch expressions tests if the value resulting from the first operand matches a
given list of types. The expression corresponding to the first matching case is finally
evaluated. If there is no match, the expression in the default clause is evaluated.

Example 11.7. Typeswitch expression.

typeswitch("foo")
  case integer return "integer"
  case string return "string"
  case object return "object"
  default return "other"
      

Result:
 "string"

In each clause, it is possible to bind the value of the first operand to a variable.

Example 11.8. Typeswitch expression.

typeswitch("foo")
  case $i as integer return $i + 1
  case $s as string return $s || "foo"
  case $o as object return [ $o ]
  default $d return $d
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Result:
 "foofoo"

The vertical bar can be used to allow several types in the same case clause.

Example 11.9. Typeswitch expression.

typeswitch("foo")
  case $a as integer | string
      return { "integer or string" : $a }
  case $o as object
      return [ $o ]
  default $d
      return $d
      

Result:
 {
   "integer or string" : "foo"
 }
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Modules and Functions
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Chapter 12. Prologs
This section introduces prologs, which allow declaring functions and global variables
that can then be used in the main query. A prolog also allows setting some default
behaviour.

The prolog appears before the main query and is optional. It can contain setters and
module imports, followed by function and variable declarations.

Module imports are explained in the next chapter.

Setters.
Setters allow to specify a default behaviour for various aspects of the language.

Default Ordering Mode
This specifies the default behaviour of for clauses, i.e., if they bind tuples in the order
in which items occur in the binding sequence. It can be overriden with ordered and
unordered expressions.

Example 12.1. A default ordering setter.

declare ordering unordered;
for $answer in collection("answers")
return {
  "owner" : $answer.owner.display_name,
  "score" : $answer.score
}
      

Result:
 {
   "owner" : "Ubiguchi",
   "score" : 7
 }
 {
   "owner" : "Rob Wells",
   "score" : 4
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 }
 {
   "owner" : "Victor Nicollet",
   "score" : 17
 }
 {
   "owner" : "descent89",
   "score" : 1
 }

Default Ordering Behaviour for Empty
Sequences

This specifies whether empty sequences come first or last in an ordering clause. It can
be overriden by the corresponding directives in such clauses.

Example 12.2. A default ordering for empty sequences.

declare default order empty least;
for $x in ({ "foo" : "bar" }, {})
order by $x.foo
return $x
      

Result:
 {
 }
 {
   "foo" : "bar"
 }

Default Decimal Format
This specifies a default decimal format for the builtin function format-number().

Example 12.3. A default decimal format setter.

declare default decimal-format
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    decimal-separator = ","
    grouping-separator = " ";
format-number(12345.67890, "# ###,##")
      

Result:
 "12 345,68"

Namespaces
Variables and functions live in namespaces that are URIs -- the semantics is similar
to that of C++ namespaces. For convenience, namespaces are associated with a much
shorter alias, and this alias can be used as a prefix to a variable or a function.

Until now, we only dealt with main queries. In main queries, the namespace alias local: is
predefined so that global variables and functions that are local to the main query can use
this alias, for example local:myvariable or local:myfunction(). This alias is associated
with a namespace, but which namespace it is not relevant for writing queries.

For variables, the alias is optional -- variables not prefixed with an alias live in no
namespace.

For functions, the absence of alias is only allowed for builtin functions. Builtin functions
live in their own special namespace.

Other namespaces and aliases can be defined as well with imported library modules.
This is defined in the next chapter.

Global Variables
Variables can be declared global. Global variables are declared in the prolog.

Example 12.4. Global variable.

declare variable $obj
  := { "foo" : "bar" };
declare variable $numbers
    := (1, 2, 3, 4, 5);
$obj,
[ $numbers ]
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Result:
 {
   "foo" : "bar"
 }
 [ 1, 2, 3, 4, 5 ]

You can specify a sequence type for a variable. If the type does not match, an error is
raised. In general, you do not need to worry too much about variable types except if
you want to make sure that what you bind to a variable is really what you want. In most
cases, the engine will take care of types for you.

Example 12.5. Global variable with a type.

declare variable $obj as object
  := { "foo" : "bar" };
$obj
      

Result:
 {
   "foo" : "bar"
 }

An external variable allows you to pass a value from the outside environment, which
can be very useful. Each implementation can choose its own way of passing a value to
an external variable. A default value for an external variable can also be supplied in case
none is provided from outside.

Example 12.6. An external global variable with a default value.

declare variable $obj external
  := { "foo" : "bar" };
$obj
      

Result:
 {
   "foo" : "bar"
 }
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In these examples, global variables have no prefix. They can also be prefixed with the
predefined alias local:, but them they must be prefixed both in the declaration and when
used.

Example 12.7. An external global variable with the local: alias.

  declare variable $local:obj external := { "foo" : "bar" };
  $local:obj
      

Result:
 {
   "foo" : "bar"
 }

Global variables that are imported from other modules are prefixed with the alias
associated with the imported module, as will be explained in the next chapter.

User-Defined Functions
You can define your own functions in the prolog.

Unlike variables, user-defined functions must be prefixed, because unprefixed functions
are the builtin functions.

In the prolog of a main query, these user-defined functions must be prefixed with the
predefined alias local:, both in the declaration and when called.

Remember that types are optional, and if you do not specify any, item* is assumed, both
for parameters and for the return type.

Example 12.8. Some user-defined functions.

declare function local:say-hello-1($x)
{
  "Hello, " || $x || "!" 
};

declare function local:say-hello-2($x as string)
{
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  "Hello, " || $x || "!"
};

declare function local:say-hello-3($x as string)
    as string
{
  "Hello, " || $x || "!"
};

local:say-hello-1("Mister Spock"),
local:say-hello-2("Mister Spock"),
local:say-hello-3("Mister Spock")
      

Result:
 "Hello, Mister Spock!"
 "Hello, Mister Spock!"
 "Hello, Mister Spock!"

If you do specify types, an error is raised in case of a mismatch

Example 12.9. A type mismatch for a user-defined function.

declare function local:say-hello($x as string)
{
  "Hello, " || $x || "!"
}; 

local:say-hello(1)
      

Result:
 An error was raised: xs:integer can not be pr
omoted to parameter type xs:string of functio
n local:say-hello()
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Chapter 13. Modules
You can group functions and variables in separate units, called library modules.

Up to now, everything we encountered were main modules, i.e., a prolog followed by
a main query.

A library module does not contain any query - just functions and variables that can be
imported by other modules.

A library module must be assigned to a namespace. For convenience, this namespace
is bound to an alias in the module declaration. All variables and functions in a library
module must be prefixed with this alias.

Example 13.1. A library module.

module namespace my =
    "http://www.example.com/my-module";

declare variable $my:variable := { "foo" : "bar" };
declare variable $my:n := 42;

declare function my:function($i as integer)
{
  $i * $i
};
    

Once you have defined a library module, you can import it in any other module (library
or main). An alias must be given to the module namespace (my). Variables and functions
from that module can be accessed by prefixing their names with this alias. The alias may
be different than the internal alias defined in the imported module -- only the namespace
really matters.

Example 13.2. An importing main module.

import module namespace other =
    "http://www.example.com/my-module";
other:function($other:n)
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Result:
 An error was raised: invalid expression: synt
ax error, unexpected character "!"

An engine may come with a number of builtin library modules. For example, there is
the standardized math module.

Example 13.3. Using the math module.

import module namespace math =
    "http://www.w3.org/2005/xpath-functions/math";
math:pi(),
math:pow(2, 30)
    

Result:
 3.1415926535897931
 1.073741824E9



99

Chapter 14. Function Library
JSONiq provides a rich set of builtin functions. We now introduce them, mostly by
giving examples of usage.

JSON specific functions.

keys
This function returns the keys of an object in an implementation-dependent order.

keys($o as item*) as string*

Example 14.1. The keys function on an object.

keys({ "foo" : 1, "bar" : 2 })
        

Result:
 "foo"
 "bar"

Example 14.2. The keys function on a more general sequence.

keys(({ "foo" : 1, "bar" : 2 },
      [ 1, 2 ],
      "foo",
      { "a" : 1, "b" : 2 }))
        

Result:
 An error was raised: sequence of more than on
e item can not be promoted to parameter type 
item() of function keys()

members
This function returns all values in an array.
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members($a as item*) as item*

Example 14.3. The members function on an array.

members([ "mercury", "venus", "earth", "mars" ])
        

Result:
 "mercury"
 "venus"
 "earth"
 "mars"

Example 14.4. The members function on a general sequence.

members((
  [ "mercury", "venus", "earth", "mars" ],
  "foo",
  { "foo" : "bar" },
  [ "jupiter", "uranus", "neptune" ]
))
        

Result:
 An error was raised: sequence of more than on
e item can not be promoted to parameter type 
item() of function members()

parse-json
This function parses its first parameter (a string) as JSON, and returns the resulting object
or array (or a sequence thereof).

parse-json($arg as string?) as json-item*

parse-json($arg as string?, $options as object) as json-
item*

The object optionally supplied as the second parameter may contain additional options,
in this case "jsoniq-multiple-top-level-items" which indicates where multiple objects
and arrays are to be parsed.
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If parsing is not successful, an error is raised.

Example 14.5. Parsing a JSON document

parse-json(
    "{ \"foo\" : \"bar\" }"
),
parse-json("
    { \"foo\" : \"bar\" }{ \"foo\" : \"bar\" }",
    { "jsoniq-multiple-top-level-items" : true }
)
        

Result:
 {
   "foo" : "bar"
 }
 {
   "foo" : "bar"
 }
 {
   "foo" : "bar"
 }

size

This function returns the size of the supplied array.

size($a as array) as integer

Example 14.6. Retrieving the size of an array.

size([1 to 10])
        

Result:
 10
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encode-for-roundtrip

This function encodes any sequence of items, even containing non-JSON types, to a
sequence of JSON items that can be serialized as pure JSON, in a way that it can be
parsed and decoded back using decode-from-roundtrip. JSON features are left intact,
while atomic items annotated with a non-JSON type are converted to objects embedding
all necessary information.

encode-for-roundtrip($items as item*) as json-item*

Example 14.7. Encoding an object.

let $o := {
  "string" : "foo",
  "decimal" : 3.14,
  "date" : date("2013-06-21")
}
return encode-for-roundtrip($o)
        

Result:
 {
   "string" : "foo",
   "decimal" : 3.14,
   "date" : {
     "Q{http://jsoniq.org/roundtrip}type" : "
xs:date",
     "Q{http://jsoniq.org/roundtrip}value" : 
"2013-06-21"
   }
 }

decode-from-roundtrip

This function decodes a sequence previously encoded with encode-for-roundtrip.

decode-from-roundtrip($items as json-item*) as item*
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Example 14.8. Decoding an object (do not be confused if the date does
not appear as a date in the output -- it is because it is serialized as
JSON, but in memory it is indeed a date).

let $o := {
  "string" : "foo",
  "decimal" : 3.14,
  "date" : date("2013-06-21")
}
let $e := encode-for-roundtrip($o)
return decode-from-roundtrip($e)
        

Result:
 {
   "string" : "foo",
   "decimal" : 3.14,
   "date" : "2013-06-21"
 }

General Builtin Functions

Access to the External Environment

collection

This function retrieves the content of a collection.

collection($name as string) as json-item*

Example 14.9. Accessing a collection.

  collection("one-object")
          

Result:
 {
   "question" : "What NoSQL technology should
 I use?"
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 }

Logics

boolean

This function converts its input to a boolean, as explained in the section called “Logic”.

boolean($sequence as item*) as boolean

Example 14.10. Converting to a boolean.

boolean("foo"), boolean("")
          

Result:
 true
 false

Raising Errors

error

This function raises an error.

error()

Example 14.11. Raising an error.

if (1 + 1 ne 3) then error() else true
          

Result:
 An error was raised: 

Functions on Numbers

abs

This function returns the absolute value of its input.
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abs(numeric?) as numeric?

Example 14.12. Getting the absolute value.

abs(-2.3)
          

Result:
 2.3

ceiling

This function returns the smallest integer that is greater or equal to its input.

ceiling(numeric?) as numeric?

Example 14.13. Getting the ceiling.

ceiling(-2.3)
          

Result:
 -2

floor

This function returns the greatest integer that is lower or equal to its input.

floor(numeric?) as numeric?

Example 14.14. Getting the Floor.

floor(-2.3)
          

Result:
 -3

round

This function rounds its input to a certain precision (upwards in case of a tie), to an
integer if no precision is provided.
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round(numeric?) as numeric?

round(numeric?, integer) as numeric?

Example 14.15. Rounding a number.

round(-2.5145, 3),
round(-2.3)
          

Result:
 -2.514
 -2

round-half-to-even

This function rounds its input to a certain precision (making the last digit even in case
of a tie), to an integer if no precision is provided.

round-half-to-even(numeric?) as numeric?

round-half-to-even(numeric?, integer) as numeric?

Example 14.16. Rounding a number to even in case of a tie.

round-half-to-even(-2.5145, 3)
          

Result:
 -2.514

number

This function converts its input to a double.

number(anyAtomicType?) as double

Example 14.17. Parsing a number.
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number("3.14")
          

Result:
 3.14

format-integer

This function formats an integer to a string.

format-integer(integer?, string) as string

Example 14.18. Formatting an integer.

format-integer((), ""),
format-integer(1234567, "# ##0 [http://www.zorba-xquery.com/html/modules/w3c/xpath#-0]"),
format-integer(1234567, "000'111'222'333")
          

Result:
 ""
 "1 234 567"
 "000'001'234'567"

format-number

This function formats a number to a string.

format-number(numeric?, string) as string

Example 14.19. Formatting a number.

format-number((), ""),
format-number(1234567.8901234, "#,###.123"),
format-number(1234567.8901234, "000,111.#")
          

Result:
 "NaN"
 "1,234,567.890"

http://www.zorba-xquery.com/html/modules/w3c/xpath#-0
http://www.zorba-xquery.com/html/modules/w3c/xpath#-0
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 "1,234,567.9"

Example 14.20. Formatting a number with a different format.

declare default decimal-format
    decimal-separator = ","
    grouping-separator = " ";
format-number(1234567.8901234, "# ###,123"),
format-number(1234567.8901234, "000 111,#")
          

Result:
 "1 234 567,890"
 "1 234 567,9"

Functions on Strings

codepoints-to-string

This function converts a sequence of Unicode codepoints to a string.

codepoints-to-string(integer*) as string

Example 14.21. Building a string from its codepoints.

codepoints-to-string((78, 111, 83, 81, 76))
          

Result:
 "NoSQL"

string-to-codepoints

This function converts a string to the sequence of its Unicode codepoints.

string-to-codepoints(string?) as integer*

Example 14.22. Getting the codepoints of a string.
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string-to-codepoints("NoSQL")
          

Result:
 78
 111
 83
 81
 76

codepoint-equal

This function compares two strings codepoint by codepoint.

codepoint-equal(string?, string?) as boolean?

Example 14.23. Comparing two strings codepoint-wise.

codepoint-equal(
    "NoSQL",
    "\u004E\u006F\u0053\u0051\u004C"
)
          

Result:
 true

concat

This function concatenates atomics (as strings) together (like || ).

concat(anyAtomicType?, anyAtomicType?, ...) as string

Example 14.24. Concatenating atomics.

  concat("foo", 1, true, "bar", ())
        

Result:
 "foo1truebar"
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string-join

This function concatenates strings with a given separator.

string-join(string*) as string

string-join(string*, string) as string

Example 14.25. Concatenating strings with a separator.

string-join((1 to 10) ! string($$), "-"),
string-join((1 to 10) ! string($$))
        

Result:
 "1-2-3-4-5-6-7-8-9-10"
 "12345678910"

substring

This function extracts a substring given its position (first position is 1) and length.

substring(string?, double) as string

substring(string?, double, double) as string

Example 14.26. Getting a substring.

substring("123456789", 5),
substring("123456789", 10),
substring("123456789", 2, 3),
substring("123456789", 2, 9),
substring((), 4)
        

Result:
 "56789"
 ""
 "234"
 "23456789"
 ""



Functions on Strings

111

string-length

This function returns the length of its string parameter.

string-length(string?) as integer

Example 14.27. Getting the length of a string.

string-length("123456789"),
string-length(""),
string-length(())
        

Result:
 9
 0
 0

upper-case

This function converts a string to upper case.

upper-case(string?) as string

Example 14.28. Converting to upper case.

upper-case("NoSQL")
        

Result:
 "NOSQL"

lower-case

This function converts a string to lower case.

lower-case(string?) as string

Example 14.29. Converting to lower case.
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lower-case("NoSQL")
        

Result:
 "nosql"

translate

This function replaces or removes individual characters from the first parameter. The
second parameter lists the characters to replace or remove. The third parameter provides
a replacement for each of them, in the same order. Characters in the second parameter
that are in excess are removed.

translate(string?, string, string) as string

Example 14.30. Replacing or removing individual characters.

translate("NoSQL", "oN", ""),
translate("NoSQL", "oN", "On"),
translate("NoSQL", "NoL", "n")
        

Result:
 "SQL"
 "nOSQL"
 "nSQ"

contains

This function checks whether the first parameter contains the second parameter (the
empty sequence is considered as "").

contains(string?, string?) as boolean

Example 14.31. Checking whether a string contains another string.

contains("NoSQL", "SQL"),
contains("NoSQL", ""),
contains("NoSQL", ()),
contains("", "SQL")
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Result:
 true
 true
 true
 false

starts-with

This function checks whether the first parameter starts with the second parameter (the
empty sequence is considered as "").

starts-with(string?, string?) as boolean

Example 14.32. Checking whether a string starts with another string.

starts-with("NoSQL", "SQL"),
starts-with("NoSQL", "No"),
starts-with("NoSQL", ()),
starts-with("", "SQL")
        

Result:
 false
 true
 true
 false

ends-with

This function checks whether the first parameter ends with the second parameter (the
empty sequence is considered as "").

ends-with(string?, string?) as boolean

Example 14.33. Checking whether a string ends with another string.

ends-with("NoSQL", "SQL"),
ends-with("NoSQL", "No"),
ends-with("NoSQL", ()),
ends-with("", "SQL")
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Result:
 true
 false
 true
 false

substring-before

This function extracts the part of the first parameter that comes before the first
occurrence of the second parameter (the empty sequence is considered as "").

substring-before(string?, string?) as string

Example 14.34. Extracting a substring up to the first occurrence of
another one.

substring-before("NoSQL", "SQL"),
substring-before("NoSQL", "No"),
substring-before("NoSQL", ()),
substring-before("", "SQL")
        

Result:
 "No"
 ""
 ""
 ""

substring-after

This function extracts the part of the first parameter that comes after the first occurrence
of the second parameter (the empty sequence is considered as "").

substring-after(string?, string?) as string

Example 14.35. Extracting a substring from the first occurrence of
another one.
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substring-after("NoSQL", "SQL"),
substring-after("NoSQL", "No"),
substring-after("NoSQL", ()),
substring-after("", "SQL")
        

Result:
 ""
 "SQL"
 "NoSQL"
 ""

matches

This function checks whether the first parameter matches the regular expression
provided as the second parameter.

matches(string?, string) as boolean

Example 14.36. Matching a regular expression.

matches("NoSQL", ".*"),
matches("NoSQL", "..SQL"),
matches("NoSQL", "No[A-Z]+")
        

Result:
 true
 true
 true

replace

This function replaces all substrings of the first parameter that match the regular
expression provided as the second parameter with the third parameter.

replace(string?, string, string) as string

Example 14.37. Replacing substrings matching a regular expression.

replace("NoSQL", ".*", "MongoDB"),
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replace("NoSQL", "No([A-Z])", "$1")
        

Result:
 An error was raised: invalid expression: synt
ax error, unexpected "(", expecting "node" or
 "value" or "json"

tokenize

This function tokenizes its first parameter, taking as a separator all substrings that match
the regular expression provided as a second parameter.

tokenize(string?, string) as string*

Example 14.38. Tokenizing a string.

tokenize("NoSQL", "[a-z]"),
tokenize(
    "Go Boldly Where No Man Has Gone Before",
    " "
)
        

Result:
 "N"
 "SQL"
 "Go"
 "Boldly"
 "Where"
 "No"
 "Man"
 "Has"
 "Gone"
 "Before"

resolve-uri

Resolves a relative URI against an absolute URI.

resolve-uri(string?, string) as anyURI*



Functions on Strings

117

Example 14.39. Resolving a URI.

resolve-uri("types", "http://www.jsoniq.org/"),
resolve-uri(
    "http://www.example.com/types",
    "http://www.jsoniq.org/"
)
        

Result:
 "http://www.jsoniq.org/types"
 "http://www.example.com/types"

encode-for-uri

Encodes reserved characters with %.

encode-for-uri(string?) as string

Example 14.40. Resolving a URI.

encode-for-uri("1 + 1 is 2")
        

Result:
 "1%20%2B%201%20is%202"

iri-to-uri

Converts an IRI to a URI by encoding characters not allowed in a URI.

iri-to-uri(string?) as string

Example 14.41. Converting an IRI to a URI.

iri-to-uri(
    "http://www.example.com/chuchichäschtli")
        

Result:
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 "http://www.example.com/chuchich%C3%A4schtli"

escape-html-uri

Escapes an HTML URI by percent-escaping all characters that are not US-ASCII.

iri-to-uri(string?) as string

Example 14.42. Converting an IRI to a URI.

escape-html-uri(
    "http://www.example.com/chuchichäschtli")
        

Result:
 "http://www.example.com/chuchich%C3%A4schtli"

Functions on Sequences

empty

Checks whether the argument is the empty sequence.

empty(item*) as boolean

Example 14.43. Checking whether a sequence is empty.

empty(()),
empty(("foo", "bar")),
empty(collection("faq")),
empty(collection("faq").owner)
        

Result:
 true
 false
 false
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 false

exists

Checks whether the argument is a non-empty sequence.

exists(item*) as boolean

Example 14.44. Checking whether a sequence is non-empty.

exists(()),
exists(("foo", "bar")),
exists(collection("faq")),
exists(collection("faq").owner)
        

Result:
 false
 true
 true
 true

head

Extracts the first item from a sequence.

head(item*) as item?

Example 14.45. Extracting the head from a sequence.

head(()),
head(("foo", "bar")),
head(collection("faq").owner)
        

Result:
 "foo"
 {
   "user_id" : 279538,
   "display_name" : "cedivad",
   "reputation" : 430,
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   "user_type" : "registered",
   "profile_image" : "http://www.gravatar.com
/avatar/b77fadd2ba791134ac40a9c184be1eda?d=id
enticon&amp;r=PG",
   "link" : "http://stackoverflow.com/users/2
79538/cedivad",
   "accept_rate" : 74
 }

tail

Extracts all items, but the first, from a sequence.

tail(item*) as item*

Example 14.46. Extracting the tail from a sequence.

tail(()),
tail(("foo", "bar")),
tail(collection("faq").owner)
        

Result:
 "bar"
 {
   "user_id" : 3932,
   "display_name" : "Randin",
   "reputation" : 585,
   "user_type" : "registered",
   "profile_image" : "http://www.gravatar.com
/avatar/d9d7ba9c17d671d911a6ca21d95b2f98?d=id
enticon&amp;r=PG",
   "link" : "http://stackoverflow.com/users/3
932/randin",
   "accept_rate" : 100
 }

insert-before

Inserts the sequence given as a third parameter at the position (first position is 1) given
as a second parameter into the sequence given as first parameter.
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insert-before(item*, integer, item*) as item*

Example 14.47. Inserting a sequence into a sequence.

insert(("foo", "bar"), 1, "foobar"),
insert(("foo", "bar"), 0, "foobar"),
insert(("foo", "bar"), 42, "foobar"),
insert((), 1, "foobar"),
insert(("foo", "bar"), 1, ())
        

Result:
 An error was raised: invalid expression: synt
ax error, unexpected ",", expecting ":" or "i
nto"

remove

Removes the item at the specified position (first position is 1).

remove(item*, integer) as item*

Example 14.48. Removing an item from a sequence.

remove(("foo", "bar"), 1),
remove(("foo", "bar"), 0),
remove(("foo", "bar"), 42),
remove((), 1)
        

Result:
 "bar"
 "foo"
 "bar"
 "foo"
 "bar"

reverse

Reverses a sequence, i.e., returns the mirrored sequence.
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reverse(item*) as item*

Example 14.49. Reversing a sequence.

reverse(("foo", "bar")),
reverse(1 to 10),
reverse(())
        

Result:
 "bar"
 "foo"
 10
 9
 8
 7
 6
 5
 4
 3
 2
 1

subsequence

Extracts a subsequence given a starting position (first position is 1) and the number
of items to extract from that position. If the position and length are not integers,
they are rounded using round(). subsequence($arg, 2) is identical to tail($arg) and to
remove($arg, 1). subsequence($arg, 1, 1) is identical to head($arg).

subsequence(item*, double, double) as item*

subsequence(item*, double) as item*

Example 14.50. Reversing a sequence.

subsequence(1 to 10, 2, 4),
subsequence(1 to 10, 2.1, 3.9),
subsequence(1 to 10, 2, 10),
subsequence(1 to 10, 0, 1)
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Result:
 2
 3
 4
 5
 2
 3
 4
 5
 2
 3
 4
 5
 6
 7
 8
 9
 10

unordered
This function returns the sequence in an order that may be different from its original
order. It can be used to give more leeway for optimizations when the order does not
matter to the user.

unordered(item*) as item*

Example 14.51. Telling the optimizer that the order of a sequence
does not matter.

unordered(("foo", "bar")),
unordered(1 to 10),
unordered(())
        

Result:
 "foo"
 "bar"
 1
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 2
 3
 4
 5
 6
 7
 8
 9
 10

distinct-values
This function filters out duplicate atomic values.

unordered(anyAtomicType*) as anyAtomicType

Example 14.52. Filtering redundant values.

distinct-values(("foo", "bar", "foo", "bar", "foo")),
distinct-values(collection("faq").tags!$$[])
        

Result:
 An error was raised: invalid expression: synt
ax error, unexpected "]"

index-of
This function searches a sequence for an atomic value and returns the positions at which
it was found.

index-of(item*, anyAtomicType) as integer*

Example 14.53. Filtering redundant values.

index-of(("foo", "bar", "foo", "bar", "foo"), "foo"),
index-of(collection("faq").tags!$$[], "nosql")
        

Result:
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 An error was raised: invalid expression: synt
ax error, unexpected "]"

deep-equal
This function compares two sequences. In a nutshell, two sequences are deep-equal if
they cannot be distinguished using JSONiq queries: they have the same length, and for
each position, the items are that position are deap-equal.

Atomic values are deep-equal if the eq operator returns true. Objects are deep equal if
the have the exact same keys and for each key the associated values are deep-equal.
Arrays are deep-equal if after unboxing, the obtained sequences are deep-equal.

deep-equal(item*, item*) as boolean

Example 14.54. Filtering redundant values.

deep-equal(
    { "foo" : "bar" },
    { "bar" : "foo" }),
deep-equal({ "foo" : [ 1 to 10 ] }, { lower-case("FOO") : [ 1, 2, 3, 4, 5, 6, 7, 8, 9, 10 ] })

        

Result:
 false
 true

remainder
• Trigonometric and exponential functions: pi#0 [http://

www.zorba-xquery.com/html/modules/w3c/xpath#pi-0], exp#1 [http://www.zorba-
xquery.com/html/modules/w3c/xpath#exp-1], exp10#1 [http://www.zorba-
xquery.com/html/modules/w3c/xpath#exp10-1], log#1 [http://www.zorba-
xquery.com/html/modules/w3c/xpath#log-1], log10#1 [http://www.zorba-
xquery.com/html/modules/w3c/xpath#log10-1], pow#2 [http://www.zorba-
xquery.com/html/modules/w3c/xpath#pow-2], sqrt#1 [http://www.zorba-
xquery.com/html/modules/w3c/xpath#sqrt-1], sin#1 [http://www.zorba-xquery.com/
html/modules/w3c/xpath#sin-1], cos#1 [http://www.zorba-xquery.com/html/
modules/w3c/xpath#cos-1], tan#1 [http://www.zorba-xquery.com/html/modules/
w3c/xpath#tan-1], asin#1 [http://www.zorba-xquery.com/html/modules/w3c/
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xpath#asin-1], acos#1 [http://www.zorba-xquery.com/html/modules/w3c/
xpath#acos-1], atan#1 [http://www.zorba-xquery.com/html/modules/w3c/
xpath#atan-1], atan2#1 [http://www.zorba-xquery.com/html/modules/w3c/
xpath#atan2-1]

• Functions that test the cardinality of sequences: zero-or-one#1 [http://
www.zorba-xquery.com/html/modules/w3c/xpath#zero-or-one-1], one-or-more#1
[http://www.zorba-xquery.com/html/modules/w3c/xpath#one-or-more-1], exactly-
one#1 [http://www.zorba-xquery.com/html/modules/w3c/xpath#exactly-one-1]

• Aggregate functions: count#1 [http://www.zorba-xquery.com/html/modules/
w3c/xpath#count-1], avg#1 [http://www.zorba-xquery.com/html/modules/
w3c/xpath#avg-1], max#1 [http://www.zorba-xquery.com/html/modules/w3c/
xpath#max-1], min#1 [http://www.zorba-xquery.com/html/modules/w3c/
xpath#min-1], sum#1 [http://www.zorba-xquery.com/html/modules/w3c/
xpath#sum-1]

• Serializing functions: serialize#1 [http://www.zorba-xquery.com/html/modules/w3c/
xpath#serialize-1] (unary)

• Context information: current-dateTime#1 [http://www.zorba-xquery.com/
html/modules/w3c/xpath#current-dateTime-1], current-date#1 [http://www.zorba-
xquery.com/html/modules/w3c/xpath#current-date-1], current-time#1 [http://
www.zorba-xquery.com/html/modules/w3c/xpath#current-time-1], implicit-
timezone#1 [http://www.zorba-xquery.com/html/modules/w3c/xpath#implicit-
timezone-1], default-collation#1 [http://www.zorba-xquery.com/html/modules/w3c/
xpath#default-collation-1]

• Constructor functions: for all builtin types, with the name of the builtin type and unary.
Equivalent to a cast expression.
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Chapter 15. Errors
Builtin expressions, operators and functions may raise errors under various conditions.
An example is a mismatching type.

The evaluation of a JSONiq expression either returns a sequence of items, or raises an
error.

Errors can be reported statically, or dynamically (at runtime).

Errors can also be raised by hand.

Example 15.1. Raising an error.

      error()
    

Result:
 An error was raised: 

Lazy evaluation and optimizations with regard to errors are allowed. Raising errors is
not always deterministic, as in some cases the processor might (but is not required to)
stop evaluating the operands of an expression if it determines that only one possible
value can be returned by that expression. The following expression may return true, or
may raise an error.

Example 15.2. Non-deterministic behavior.

      true or error()
    

Result:
 true
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Chapter 16. Equality vs.
Identity

As in most languages, one can distinguish between physical equality and logical
equality.

Atomics can only be compared logically. Their physically identity is totally opaque to
you.

Example 16.1. Logical comparison of two atomics.

1 eq 1
    

Result:
 true

Example 16.2. Logical comparison of two atomics.

1 eq 2
    

Result:
 false

Example 16.3. Logical comparison of two atomics.

"foo" eq "bar"
    

Result:
 false

Example 16.4. Logical comparison of two atomics.

"foo" ne "bar"
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Result:
 true

Two objects or arrays can be tested for logical equality as well, using deep-equal(),
which performs a recursive comparison.

Example 16.5. Logical comparison of two JSON items.

deep-equal({ "foo" : "bar" }, { "foo" : "bar" })
    

Result:
 true

Example 16.6. Logical comparison of two JSON items.

deep-equal({ "foo" : "bar" }, { "bar" : "foo" })
    

Result:
 false

The physical identity of objects and arrays is not exposed to the user in the core JSONiq
language itself. Some library modules might be able to reveal it, though.
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Chapter 17. Sequences vs.
Arrays

Even though JSON supports arrays, JSONiq uses a different construct as its first class
citizens: sequences. Any value returned by or passed to an expression is a sequence.

The main difference between sequences and arrays is that sequences are completely flat,
meaning they cannot contain other sequences.

Since sequences are flat, expressions of the JSONiq language just concatenate them to
form bigger sequences.

This is crucial to allow streaming results, for example through an HTTP session.

Example 17.1. Flat sequences.

( (1, 2), (3, 4) )
      

Result:
 1
 2
 3
 4

Arrays on the other side can contain nested arrays, like in JSON.

Example 17.2. Nesting arrays.

[ [ 1, 2 ], [ 3, 4 ] ]
      

Result:
 [ [ 1, 2 ], [ 3, 4 ] ]

Many expressions return single items - actually, they really return a singleton sequence,
but a singleton sequence of one item is considered the same as the item itself.
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Example 17.3. Singleton sequences.

1 + 1
      

Result:
 2

This is different for arrays: a singleton array is distinct from its unique member, like
in JSON.

Example 17.4. Singleton sequences.

[ 1 + 1 ]
      

Result:
 [ 2 ]

An array is a single item. A (non-singleton) sequence is not. This can be observed by
counting the number of items in a sequence.

Example 17.5. count() on an array.

count([ 1, "foo", [ 1, 2, 3, 4 ], { "foo" : "bar" } ])
      

Result:
 1

Example 17.6. count() on a sequence.

count( ( 1, "foo", [ 1, 2, 3, 4 ], { "foo" : "bar" } ) )
      

Result:
 4

Other than that, arrays and sequences can contain exactly the same members (atomics,
arrays, objects).
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Example 17.7. Members of an array.

[ 1, "foo", [ 1, 2, 3, 4 ], { "foo" : "bar" } ]
      

Result:
 [ 1, "foo", [ 1, 2, 3, 4 ], { "foo" : "bar" }
 ]

Example 17.8. Members of a sequence.

( 1, "foo", [ 1, 2, 3, 4 ], { "foo" : "bar" } )
      

Result:
 1
 "foo"
 [ 1, 2, 3, 4 ]
 {
   "foo" : "bar"
 }

Arrays can be converted to sequences, and vice-versa.

Example 17.9. Converting an array to a sequence.

[ 1, "foo", [ 1, 2, 3, 4 ], { "foo" : "bar" } ]()
      

Result:
 1
 "foo"
 [ 1, 2, 3, 4 ]
 {
   "foo" : "bar"
 }

Example 17.10. Converting a sequence to an array.
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[ ( 1, "foo", [ 1, 2, 3, 4 ], { "foo" : "bar" } ) ]
      

Result:
 [ 1, "foo", [ 1, 2, 3, 4 ], { "foo" : "bar" }
 ]
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Chapter 18. Null vs. Empty
Sequence

Null and the empty sequence are two different concepts.

Null is an item (an atomic value), and can be a member of an array or of a sequence, or
the value associated with a key in an object. Empty sequences cannot, as they represent
the absence of any item.

Example 18.1. Null values in an array

[ null, 1, null, 2 ]
      

Result:
 [ null, 1, null, 2 ]

Example 18.2. Null values in an object

{ "foo" : null }
      

Result:
 {
   "foo" : null
 }

Example 18.3. Null values in a sequence

(null, 1, null, 2)
      

Result:
 null
 1
 null
 2
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If an empty sequence is found as an object value, it is automatically converted to null.

Example 18.4. Automatic conversion to null.

{ "foo" : () }
      

Result:
 {
   "foo" : null
 }

In an arithmetic opration or a comparison, if an operand is an empty sequence, an empty
sequence is returned. If an operand is a null, an error is raised except for equality and
inequality.

Example 18.5. Empty sequence in an arithmetic operation.

() + 2
      

Result:
 

Example 18.6. Null in an arithmetic operation.

null + 2
      

Result:
 An error was raised: arithmetic operation not
 defined between types "js:null" and "xs:inte
ger"

Example 18.7. Null and empty sequence in an arithmetic operation.

null + ()
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Result:
 

Example 18.8. Empty sequence in a comparison.

() eq 2
      

Result:
 

Example 18.9. Null in a comparison.

null eq 2
      

Result:
 false

Example 18.10. Null in a comparison.

null lt 2
      

Result:
 true

Example 18.11. Null and the empty sequence in a comparison.

null eq ()
      

Result:
 

Example 18.12. Null and the empty sequence in a comparison.
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null lt ()
      

Result:
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Chapter 19. Reference
A great part of JSONiq is directly inherited from XQuery -- everything that is orthogonal
to XML.

If you would like to know more about JSONiq, you can browse http://www.jsoniq.org/.

If you are interested in knowing the semantics of the expressions more in depth, you can
find most of them on the XQuery 3.0 specification at http://www.w3.org/TR/xquery-30.

If you are interested in knowing the semantics of the builtin functions more in depth,
you can find most of them on the XPath and XQuery Functions and Operators 3.0
specification at http://www.w3.org/TR/xpath-functions-30.
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