Introduction to JSONIq
The SQL of NoSQL

Ghislain Fourny

Introduction to JSONiq: The SQL of NoSQL
by Ghislain Fourny

Abstract

JSONIq is a query and processing language specifically designed for the popular JSON
data model. The main ideas behind JSONiq are based on lessons learnt in more than 30
years of relational query systems and more than 15 years of experience with designing
and implementing query languages for semi-structured data. As a result, JSONiq is an
expressive and highly optimizable language to query and update NoSQL stores. It enables
developersto leverage the same productive high-level language across avariety of NoSQL
products. This book gives a complete introduction to the JSONiq language. It does so
by giving examples for all types of expressions and functions. Those examples, can be
immediately used - because they work standalone - allowing the interested reader to start
diving into the language.

Table of Contents

Lo INEFOAUCTION ..ttt et e e et e e e e eees 1
NoSQL - Why Are Relational Databases Not Good Enough?.............cc....... 1
WY JSONIG? -ttt ettt e et e e e 1
How to Run the Queries in ThiS BOOK?covviviiiiiiiiiiiei e, 3
ACKNOWIEAGEMENESevtiieiii e 3

I. JISON and the JSONiq Data Modelccooviiiiiiiiiieii e 5
2. ThE JSON SYNLAX ..eevveieieiiie ettt ettt 7

JSON SEINGS .. eevtieeeeet ettt e e et e e ere e e 7
JSON NUMDENS ... 8
JSON BOOIEANS ...t 9
JSON NUIT < 9
JSON ODJECES .ttt ettt et et e e e eeera e eees 9

3. The JSONiq Data MOdE]loooiiviiiiiiiiee e 11
JSONiqg Values: Items and SEQUENCEScevvvuiieieiiiieeiiie e 11
OBJECES ..t 13
ATTYS o 13
ATOIMICS ..ttt et eeaes 14

4. The JSONIQ TYPE SYSIEMuueiiiiiiee ettt 15
[EEM TYPES ot 16
ALOMIC TYPES .ottt 16

JSON Item Types : Object Typesand Array TYPES..........eeeeeee 18

The Most General 1tem TYPe.vveeiiiiiieiii e 19

SEOUENCE TYPES vttt ettt et 19

[1. Construction of Items and JSON Navigationccceuuieeiiiiineeiiiineeeiiinnn, 23

5. CONSLruCtion Of 1TEMSciiiii e 25

ALOMIC LITEralS oo 25
SUNG LItEralS .oueeeeeii e 25

NUMDEr LItEralS. ...ooiiieiiiiiii e 25

Boolean and Null LiteralScoouvvieiiiiiniiiiiieceeec, 26

OBJECt CONSIIUCIONS ...ttt 27
ATy CONSITUCKONSiivieieieeei et e 28
CompPOoSiNg CONSITUCLOISeeeeieneeeeiiieeeeii e e e e e e eeniaeeees 29

B. COECIIONS ...ttt e 33
Collections Used Throughout ThiSBOOKcccvvviiiiiiiiinieiiinnnnn. 33

7. JSON NAVIGELION ...eevetiieeiii ettt e et e e e et e eenee 39
ObJeCt NaVIGaLiONeeiiiiieieii e 39
ATTEY UNDOXING +.. ettt e e 42
SequenCe FITENNG ...ooovuiiii e 42
ATTaY NaVIGAON ..vuiiiiii e 44

Introduction to JSONiq

1. JSONIQ EXPIrESSIONS .. cvvuiiiiieiiieeii e ee e e e e e e e e e e e e e e e e eanas 45
8. BaSiC OPEralioNScuuieiiiieiiiieei e e e e e e e e e e e e e 47
Construction Of SEQUENCESvvviiiiiiieei e e e 47
COmMME OPEIALON ...evveiieieie e 47

REANGE OPEIaLOr . vvveiieieii e 48
Parenthesized EXPreSSiONScocvueviiiieiiieeii e e e 48
ATTAMELICS L.niiiii e 49
String CONCAENALIONuiviiieii e e e e 50
(001 410 = =0 o N 50
Empty Sequence BEhaviorccoovviiiiiiiiiii e 51
oo 52
Propositional LOGIC .. .c.uuvviiniiiiiieiie e ecc e e e e e 53
First-Order Logic (Quantified Variables)cccoeevvviveennnn. 54

BUItIN FUNCLIONSvuiiiiiiiicece e 55

9. Control FIOW EXPIrESSIONSucvvvnieiiiieiiieiiiie e e e e e e e st e e e eaneens 57
Conditional EXPreSSIONSccvueiiiieeiiieeeieeei e e e e e e e e e e eanas 57
ST (o g = (= 0] < 59
Try-CatCh EXPreSSiONScvvveiii e e e 60

10. FLWOR EXPrESSIONS ...uivvieiiieeeiieeiiieeei e eeaeeeaineeete e st e e st e eaneeaanns 63
VariabDIES ..ovniie e 63

FOI ClaUSES ..oovviieeei e e e e eeees 64
WHEE ClaUSES ...covviieiieii et eaenns 69
Order ClaUSESvuieeiii et 70
GroUP ClAUSESoviiiii e e e e e e 73

[O = = PR 76
COUNE ClALSES ..evvneeieiie ettt e e a e e s 77

M OPEIEIOL ..t 78
Composing FLWOR EXPreSSIONScccuueiinieiiiieeiiieeiineesineesaneeenns 79
Ordered and Unordered EXPressionsScccevvevviieeiieviinieiieeninns 80

11. Expressions Dealing With TYPESuvviviiiiiieiie e 83
INStANCE-Of EXPrESSIONSvuuiivieiiiieiei e e ee e e e e e e et e e e eanes 83
R {0 (=S [0 83
Castable EXPreSSIONSc.uuieiiiieiiiieeiii e e e e e e e e e e e e e eanes 84

Cast EXPIrESSIONS . .c.uuiiii i e 85
TYPESWILCh EXPreSSIONS ... cvvvciiiieii e 86

IV. Prolog, Modules and FUNCLIONScoocuiiiiiiiiii e 89
12, PrOlOgS ovnneiiiieie et 91
S 1< = PP 91
Default Ordering Modeoocvvieiiiieiii e, 91

Default Ordering Behaviour for Empty Sequences................... 92

Default Decimal FOrmatcoovveuviieiiiiieeciiineeeciie e 92

Introduction to JSONiq

Globa Variablesccoiviiiiiii e 93
User-Defined FUNCLIONScovviiii e 95

G /oo (11 =P 97
7 g Tox o) R = Y 99
JSON SPECIfiC FUNCLIONS.covniiiccii e 99

KBS e 99

101C 10101 £ 99

0T S S 1S o) o [100

S1Z ettt 101
encode-for-roundtripcooevviiieii e 102
decode-from-roundtripooeeeviieiiie e, 102

General BUiltin FUNCLIONScvvviiiiiee e 103
Access to the External Environmentccooceeveviiieeinnennn, 103

oo [PP 104

RaAISING EITOIS ..vuiiiiii et 104

Functions on NUMbDEr'Sooeiiiiiiiiiic e 104

FUNCioNS ON SENQGS ..vvovvviei e 108

FUNCLions ON SEQUENCESvvvviiiecee e 118

UNOFAErEd ...oeeei e 123
AiStinCt-VAIUBScvvniiiie e, 124

INAEX-0f ..t 124

deEP-EQUELuii 125

L= 107= 1010 = G 125

V. AAVANCEA NOLESvuiiiiiieii e e e e e e e aa s 127
2D, EITOrS ettt 129
16. Equality VS, 1dentityccvviiiiiii e 131
17. SEQUENCES VS, ATITAYS ouieniieiie et en 133
18. Null vs. EMPLy SEQUENCE ... ccvviciiii e e e e 137
19, REFEIENCE .eii i 141

Vi

Chapter 1. Introduction

NoSQL - Why Are Relational
Databases Not Good Enough?

Relational databases have existed for decades. The entity-relationship model is very
powerful andwithit, itispossibleto model almost any structured data. SQL isthewidely
accepted standard for these databases. It supports the relational algebra operators like
join, project, select, filter.

In the last decade, several companies saw the amount of data they needed to store
and handle increase dramatically. They soon encountered problems scaling up and out.
In his foreword on the "MongoDB Definitive Guide," Jeremy Zawodny explained it
convincingly: once you add more replicas and shards, you realize you are stuck in the
original schemayou designed unless you invest considerable effort.

In order to solve thisissue, a new generation of data stores appeared. They often share
the same set of design principles:

» Thelinesof arelational table arereplaced with hierarchical data (semi-structured data,
aka trees), while tables become collections of trees.

» Thesetrees are primarily associated with and indexed by an ID or akey.

» Schemas are not mandatory, i.e., trees within a collection need not share the same
structure (heterogeneity).

» Some data stores see atree asakind of black box (key/value stores) while some other
data stores use XML (like eXist) and more recently JSON (like MongoDB) syntax
to represent trees.

These new technologies are often referred to as"NoSQL ."

Why JSONig?

format for the values (or trees) and a query language tailored for the data store.

JSONiq was developed with the idea that many data stores share the same design
principles (e.g., collections of trees) so that it should be possibly to query them in a
unified and portable way.

Why JSONig?

JSONiq is aquery and processing language specifically designed for the popular JSON
datamodel. The main ideas behind JSONiq are based on lessons|earned in more than 30
years of relational query systems and more than 15 years of experience with designing
and implementing query languages for semi-structured data like XML and RDF.

The main source of inspiration behind JSONiq is XQuery, which has been proven so
far a successful and productive query language for semi-structured data (in particular
XML). JSONiq borrowed a large numbers of ideas from XQuery like the structure and
semantics of aFLWOR construct, the functional aspect of the language, the semantics of
comparisons in the face of data heterogeneity, the declarative, snapshot-based updates.
However, unlike XQuery, JSON is not concerned with the peculiarities of XML like
mixed content, ordered children, the confusion between attributes and elements, the
complexities of namespaces and QNames, or the complexities of XML Schema, and so
on.

The power of the XQuery's FLWOR construct and the functional aspect combined with
the simplicity of the JSON data model resultsin a clean, sleek, and easy to understand
data processing language. As a matter of fact, JSONiq is a language that can do more
than queries: it can describe powerful data processing programs from transformations,
selections, joins of heterogeneous data sets, data enrichment, information extraction,
information cleaning, and so on.

Technically, the main characteristics of JSONiq (and XQuery) are the following:

e It is a set-oriented language. While most programming languages are designed
to manipulate one object at a time, JSONiq is designed to process sets (actualy,
sequences) of data objects.

e It is a functional language. A JSONiq program is an expression; the result of
the program is the result of the evaluation of the expression. Expressions have
fundamental role in the language: every language construct is an expression and
expressions are fully composable.

 Itisadeclarative language. A program specifies what is the result being cal cul ated,
and does not specify low level algorithms like the sort algorithm. Neither does it
specify whether an algorithm is executed in main memory or is external; whether it
is executed on a single machine or parallelized on several machines; or what access
patterns (aka indexes) are being used during the evaluation of the program. Such
implementation decisions should be taken automatically by an optimizer, based on
the physical characteristics of the data and of the hardware environment -- just like
atraditional database would do. The language has been designed from day one with
optimizability in mind.

How to Run the
Queriesin This Book?

It is designed for nested, heterogeneous, semi-structured data. Data structures in
JSON can be nested with arbitrary depth, do not have a specific type pattern (i.e.
are heterogeneous), and may or may not have one or more schemas that describe
the data. Even in the case of a schema, such a schema can be open and/or simply
partially describe the data. Unlike SQL, which is designed to query tabular, flat,
homogeneous structures. JSONiq has been designed from scratch asaquery for nested
and heterogeneous data.

How to Run the Queries in This
Book?

Our first implementation of JSONiq was done in the Zorba NoSQL processor, which
is developed jointly between Oracle, 28msec, and the FLWOR Foundation. The home
page is http://mww.zorba.io/ and a sandbox is available on http://try.zorba.io/. Y ou can
run most of the queries shown in the examples of this book in this sandbox (not the ones
accessing collections).

28msec provides a platform called 28.io0, which is specifically tailored for executing
JSONIqg queriesagainst an existing MongoDB database. Y ou canrun all example queries
inthe Try-1t-Now sandbox at http://mww.28.io/, inwhich the collectionsfaq and answers
are prepopulated with lots of data and additional sample queries.

Acknowledgements

The design and implementation of JSONiq is a team effort involving Dana Florescu
(Cracle), Jonathan Robie (EMC), Matthias Brantner (28msec), Markos Zaharioudakis
(Cracle), Till Westmann (Oracle) and myself (28msec).

This book was carefully reviewed by Matthias Brantner and Federico Cavalieri
(28msec).

A significant part of the introduction ("Why JSONig?"') was written by Dana Florescu.

Part I. JSON and the
JSONIiqg Data Model

Chapter 2. The JSON Syntax

The JSONiq query language was specifically designed for querying and processing
JSON.

As dstated on its home page http://www.json.org/, JSON is a “ lightweight data-
interchange format. It is easy for humans to read and write. It is easy for machines to
parse and generate. ”

JSON itself isonly about syntax: astring may or may not match the JISON grammar. If it
does, then it is well-formed JSON. The JSON syntax is made of the following building
blocks: objects, arrays, strings, numbers, booleans and nulls. Let us begin with a quick
overview of all these building blocks.

JSON Strings

Strings are double-quoted. To put it simply, they are sequences of Unicode characters
with absolutely no restriction:

Ilfooll'
"What NoSQ. sol utions are out there?"

However, syntactically, some of these characters must be escaped with backs ashes
(escape sequence). Thisincludes double quotes, escaped as\" -- because otherwise they
could be confused with the end of a string -- and backslahes themselves, escaped as \\
-- because otherwise you would not know if you mean a backslash character, or if you
are escaping the following character.

"What \"NoSQ.\" solutions are out there?"

Finally, all Unicode control characters (null, new line, form feed, delete...) are not
allowed directly and must be built with an escape sequence. Any Unicode character,
including control characters, can be built with \u followed by the four hexadecimal digits
that identify it within Unicode. The most frequent control characters even have their
own shortcuts: \n (new line), \t (tab), \r (carriage return), \b (backspace), \f (form feed).
The dlash aso can be obtained with V/, although it isfinetoo if it appears alone. Thisis
useful in JSON-hosting environments where slashes are special.

JSON Numbers

"What \"NoSQ.\" solutions are out there:\n"
" MapReduce\ uO00OAMONgODB\ n\ u0085"

JSON Numbers

Numbers cover the entire decimal space. Thereisno range restriction. Although thereis
no formal distinction in JISON, numbers can be grouped into three subcategories. These
subcategories play an important role in JSONiq.

* Integers, possibly with a negative sign and not beginning with aleading O (except 0
itself):

0

9

42

-96
123456789012345678901234567890123456789012345

» "Plain" decimals, with adot, both followed and preceded by at least by one digit (no
leading dot):

0.3
9.6

42.2346902834
-96. 01345023400

» Decimalsin scientific notation, i.e., aplain decimal followed by an E (case does not
matter) and by a power of ten (an integer with an optional sign):

0. 3e0

9. 6E+24
42.2346902834e-2

-96. 01345023400E- 02345

JSON Booleans

JSON Booleans

Booleans cover the two logical truth values true and false, unquoted. Thereis not much
more to say about them...

true
fal se

JSON Null

Null is a special value that can be used to denote the absence of value.

nul |

JSON Objects

Objects are unordered sets of key/value pairs. A key is any JSON string as described
above. A valueisany JSON building block.

According to the JISON RFC, keys (the strings) should be unique within the same object
-- and JSONIiq does consider them unique.

Y ou can see in the following examples that values can be also nested objects or arrays.

{

"_id" @ "511C/C5C9A277C22D138802D"

"question_id" : 4419499,

"last_edit_date" : "2012-12-17T00: 02: 31",
"creation_date" : "2010-12-11T23:15:19",
"last_activity_date" : "2012-12-17T00: 02: 31",
"score" : 15,

"accepted_answer _id" : 4421601

"title" : "MySQL and NoSQL: Help ne to choose the right one
"tags" : ["php", "nysql", "nosgl", "cassandra"],
"view count" : 3972,

JSON Objects

"owner" : {
"user_id" : 279538,
"di spl ay_name" : "cedivad",
"reputation" : 430,
"user _type" : "registered",
"profile_image" : "http://ww. gravatar.confavatar/b77f...",
"l'ink" : "http://stackoverfl ow. confusers/ 279538/ cedi vad",
"accept_rate" : 74
3
"l'ink" : "http://stackoverfl ow. conf questi ons/ 4419499/ nys...",
"is_answered" : true
}

In the NoSQL world, top-level JISON objects are often referred to as JSON documents.

10

Chapter 3. The JSONig Data
Model

Having a JSON document as pure syntax is not very useful in itself, except to send it
over anetwork or to storeit in adocument store of course. To makeuse of it in adatabase
or in other processing environments, you need to bring it to ahigher level of abstraction
and give semantics to the building blocks. Thisiswhat a DataModel isfor.

We now introduce the JSONiq data model.

Let us begin with some good news first: the JSON syntax that we have just introduced
isasubset of JSONig. Concretely, this means that any of these syntactic JSON building
blocks can be copy-and-pasted, and executed as a JSONiq query. The output will be the
counterpart of this JSON building block in the Data Model. So, if you are familiar with
JSON, then you aready know some JSONiqg.

JSONIq Values: Items and
Sequences

In JSONiq, the JISON building blocks described in the former section, on amore abstract
level, are referred to as items. JSONiq manipulates sequences of these items. Hence, a
JSONiq vaueisasequence of items. So, in particular, aJSONiq query returns sequences
of items. Actually, even inside a JSONiq query, sequences of items are passed around
between the JSONiq building blocks internal to a query (called expressions).

Let us copy-and-paste a JISON Object and execute it as JSONiq:

Example 3.1. A sequence of just oneitem.

{ "foo" : "bar" }
Resul t:
{
"foo" : "bar"
}

11

JSONiq Values:
Items and Sequences

The above query generates a sequence of oneitem, an object item in this case. Theresult
displayed above is the output of this query when run with the Zorba query processor,
which is one of the JSONiq implementations.

Commasareall you need to begin building your own sequences. Y ou can mix and match!

Example 3.2. A sequence of variousitems.

"foo", 2, true, { "foo", "bar" }, null, [1, 2, 3]

Resul t:
"foo"

2

true

"foo"

"bar"

nul |

[1, 2, 3]

There are three golden rules about sequences that are useful to keep in mind.

Rule #1 [http://www.zorba-xquery.com/html/modul es/w3c/xpath#-1]: Sequences are
flat and cannot be nested. This makes streaming possible, which is very powerful.

Example 3.3. Sequences areflat.

(("foo", 2), ((true, 4, null), 6))

Resul t:
"foo"
2
true
4
nul |
6

Rule #2 [http://www.zorba-xquery.com/html/modul es/w3c/xpath#-2]: A sequence can
be empty. The empty sequence can be constructed with empty parentheses.

12

http://www.zorba-xquery.com/html/modules/w3c/xpath#-1
http://www.zorba-xquery.com/html/modules/w3c/xpath#-1
http://www.zorba-xquery.com/html/modules/w3c/xpath#-2
http://www.zorba-xquery.com/html/modules/w3c/xpath#-2

Objects

Example 3.4. The empty sequence.

0

Resul t :

Rule #3 [http://www.zorba-xquery.com/html/modul es/w3c/xpath#-3]: A sequence of
just oneitem isconsidered the same asjust thisitem. Whenever we say that an expression
returns or takes one item, we really mean that it takes a singleton sequence of oneitem.

Example 3.5. A sequence of oneitem.
("foo")
Resul t:
n f 00II
JSONi(q classifies the items mentioned above in three categories:
» Objects: the counterparts of the syntactic JSON objects.

 Arrays. the counterparts of the syntactic JSON arrays.

» Atomics. the counterparts of JSON strings, JSON numbers, JSON bool eansand JSON
nulls - but with avery rich type system which includes dates, for example.

Objects

An object represents a JSON object: an unordered collection of string/item pairs.
Each pair consists of an atomic of typestring and of anitemwhich canbein any category.

No two pairs have the same name. Because of this, the word field is also used to refer
to pairs.

Arrays

An array represents a JSON array: an ordered list of items -- itemsin any category.

13

http://www.zorba-xquery.com/html/modules/w3c/xpath#-3
http://www.zorba-xquery.com/html/modules/w3c/xpath#-3

Atomics

An array can be seen as a sequence that is wrapped in one single item. And since an
array is an item, arrays can nest -- likein JSON.

Atomics

An atomic is anon-structured value that is annotated with atype.

JSONIq defines many useful builtin atomic types. For now, let us introduce those that
have a JSON counterpart. Note that JSON numbers correspond to three different types
in JSONig.

string: all JSON strings.
integer: all JSON numbers that are integers (no dot, no exponent), infinite range.
decimal: al JSON numbers that are decimals (no exponent), infinite range.

double: |EEE double-precision 64-bit floating point numbers (corresponds to JSON
numbers with an exponent).

boolean: the JISON booleans true and false.

null: the JSON null.

JSONIq &l so offers many other types of atomics. Hereisalittle appetizer that showcases
constructing a date and a duration (365 days), and adding them.

Example 3.6. Atomics with the types date and dayTimeDur ation.

dat e("2013-06-21") + xs:dayTi meDuration("P365D")

Resul t :

"2014- 06- 21"

14

Chapter 4. The JSONIiq Type
System

JSONig manipulates semi-structured data: in general, JSONiq allows you, but does not
require you to specify types. So you have as much or as little type verification as you
wish.

Likein Javaor C++, it is possible to create a variable with a given static type:

Example 4.1. Specifying a type.

let $x as integer := 16
return $x * $x

Resul t :
256

Likein JavaScript, it is possible to create a variable without explicitly giving any static
type. JISONiqisstill strongly typed, so that youwill betoldif thereisatypeinconsistency
or mismatch in your programs.

Example 4.2. Not specifying a type.

let $x := 16
return $x * $x

Resul t:
256

Variableswill be explained later morein details.

JSONiq supports types at the sequence level. They are called sequence types, and the
syntax for designing typesiscalled the sequencetype syntax. Thetype"integer" that was
shown above in aquery matches singleton sequences of one atomic item of typeinteger.

Whenever you do not specify thetype of avariable or thetype signature of afunction, the
most general type for any sequence of items, item*, is assumed. But it is not forbidden

15

Item Types

for the processor to be smart and warn you if it can detect that a type issue can arise
at runtime.

Therearemany JSONiq expressions (cast, instance of, ...) which perform type operations
and that make use of the sequence type syntax. In the remainder of this section, we
will introduce sequence types using an "instance of" expression that returnstrue or false
depending on whether or not the type on the right side is matched by the value on the
left side-- likein Java.

Example 4.3. Theinstance of operator.
16 i nstance of integer

Resul t :
true

ltem Types
Atomic Types

Atomic types are organized in atree hierarchy.
JSONiq defines the following build-in types that have a direct relation with JSON:
* string: the value spaceis all strings made of Unicode characters.

All string literals build an atomic which matches string.

* integer: the value space is that of all mathematical integral numbers (N), with an
infinite range. This is a subtype of decimal, so that all integers also match the item
type decimal.

All integer literals build an atomic which matches integer.

 decimal: the value space is that of all mathematical decimal numbers (D), with an
infinite range.

All decimal literals build an atomic which matches decimal.

 double: the value space is that of al IEEE double-precision 64-bit floating point
numbers.

16

Atomic Types

All double literals build an atomic which matches double.

* boolean: the value space contains the booleans true and false.
All boolean literals build an atomic which matches boolean.

» null: the value spaceis a singleton and only contains null.
All null literals build an atomic which matches null.

» atomic: all atomic types.

All literals build an atomic which matches atomic.

Example 4.4. Atomic types

16 i nstance of integer,

16 i nstance of decinmal,
16.6 i nstance of decinmal,
16. 6e10 i nstance of doubl e,
"foo" instance of string,
true i nstance of bool ean,
null instance of null,
"foo" instance of atonic

Resul t:
true
true
true
true
true
true
true
true

JSONiq also supports further atomic types, which were borrowed from XML Schema
1.1

These datatypes are already used as a set of atomic datatypes by the other two semi-
structured data formats of the Web: XML and RDF, as well as by the corresponding

17

JSON Item Types : Object
Typesand Array Types

guery languages. XQuery and SPARQL, soitisnatural for acomplete JSON datamodel
to reuse them.

* Further number types: long, int, short, byte, float.

» Date or time types: date, dateTime, dateTimeStamp, gDay, gMonth, gMonthDay,
gYear, gYearMonth, time.

* Duration types. duration, dayTimeDuration, yearMonthDuration.
 Binary types. base64Binary, hexBinary.
* An URI type: anyURI.

Atomic items that have these builtin atomic types can only be built with a constructor
-- again similar to JavaScript.

Example 4.5. Further builtin atomic types.

dat e("2013-06-18") instance of date,

dat eTi me("2013- 06-21T05: 00: 00Z") instance of dateTi ne,
time("05:00:00") instance of tine,

| ong("1234567890123") instance of |ong

Resul t:
true
true
true
true

JSON Item Types : Object Types and Array
Types

All objects match the item type object aswell as json-item.
All arrays match the item type array as well as json-item.

Atomics do not match json-item.

Example 4.6. Further builtin atomic types.

18

The Most General Item Type.

{ "foo" : "bar" } instance of object,

{ "foo" : "bar" } instance of json-item
{} instance of object,

[1, 2, 3, 4] instance of array,

[1, 2, 3, 4] instance of json-item

Resul t:
true
true
true
true
true

The Most General Item Type.

All items match the item type item.

Example 4.7. The most general item type: item.

{ "foo" : "bar" } instance of item
[1, 2, 3, 4] instance of item
"foo" instance of item

42 instance of item

fal se i nstance of item

null instance of item

Resul t:
true
true
true
true
true
true

Sequence Types

All sequences match the sequence type item®*.

19

Sequence Types

Example 4.8. The most general sequencetype: item*.

{ "foo" : "bar" } instance of itent,

() instance of itent,

(L 1, 2, 31, 2, { "foo" : "bar" }, 4)
i nstance of itent

Resul t :
true
true
true

But sequence types can be much more precise than that. In general, a sequence typeis
made of an item type, as presented above, followed by an occurrence indicator among
the following:

» * gtands for a sequence of any length (zero or more)
 + stands for a non-empty sequence (one or more)
» ?standsfor an empty or a singleton sequence (zero or one)

» The absence of indicator stands for a singleton sequence (one).

Example 4.9. Further sequencetypes.

({ "foo" : "bar" } , {}) instance of object*,
() instance of object*,

([1, 2, 3], {}) instance of json-itemt,

[1, 2, 3] instance of array?,

() instance of array?,

'foo" instance of string

Resul t :
true
true
true
true
true

Sequence Types

true

Thereisalso aspecia type that matches only empty sequences, denoted () as well:

Example 4.10. Empty sequence type: ()
() instance of ()

Resul t:
true

21

22

Part Il. Construction of
ltems and JSON Navigation

Chapter 5. Construction of
ltems

Aswe just saw, the items (objects, arrays, strings, ...) mentioned in the former section
are constructed exactly as they are constructed in JISON. In away, any JSON building
block is also a well-formed JSONiq query which just "returns itself" (more precisely:
its counterpart in the JSONiq Data Model)!

Atomic Literals
String Literals

The syntax for creating strings is identical to that of JSON. No surprise here. JSON's
backsl ash escaping is supported, and likein JSON, double quotesarerequired and single
guotes are forbidden.

Example5.1. String literals.

"foo",

"This is aline\nand this is a new |line",
"\ u0001",
"This is a nested \"quote\""

Resul t:

"foo"

"This is a line

and this is a new |line"

" &Hx1; "

"This is a nested "quote""

Number Literals.
The syntax for creating numbersisidentical to that of JSON.

Example 5.2. Number literals (integer, decimal and doubleliterals)

25

Boolean and Null Literals

42,
3. 14,
-6. 022E23

Resul t :

42

3.14

-6. 022E23

WEell, not quite. Actually, JSONiq alows a more flexible superset. In particular;
* leading Os are allowed
» adecimal literal can begin or end with adot

e anumber may begin with a+ sign

Example5.3. A more general literal syntax.

042,

. 1415926535,
42.,

+6. 022E23

Resul t:
42
0. 1415926535
42
6. 022E23

Remember that JSONIiq distinguishes between integers (no dot, no scientific notation),
decimals (dot but no scientific notation), and doubles (scientific notation). As expected,
an integer literal creates an atomic of type integer, and so on. No surprises either.

Boolean and Null Literals

Thereisnot much to say actually -- boolean literal sbuild boolean atomics, the null literal
builds a null atomic, so no worries here, the world isin order. You might as well want
to move to the next section.

26

Object Constructors

Example 5.4. Boolean and null literals.

true,
fal se,
nul |

Resul t:
true
fal se
nul |

Object Constructors

The syntax for creating objects is also identical to that of JSON. You can use for an
object key any string literal, and for an object value any literal, object constructor or
array constructor.

Example 5.5. Object constructors.

{1,
{ "foo" : "bar" },
{ "foo" : [1, 2, 3, 4,5 611},
{ "foo" : true, "bar" : false },
{ "this is a key" : { "value" : "a value" } }
Resul t:
{
}
{
"foo" : "bar"
}
{
"foo" : [1, 2, 3, 4, 5, 6]
}
{
"foo" : true,
"bar" : false

27

Array Constructors

}
{
"this is a key" : {
"val ue" : "a val ue"
}
}

Again, JSONiq is more flexible here. Like in JavaScript, if your key is simple enough
(like alphanumerics, underscores, dashes, these kinds of things), you are welcome to
omit the quotes. The strings for which quotes are not mandatory are called unquoted
names. This class of strings can be used for unquoted keys, but also in later sections for
variable and function names, and for module aliases.

Example 5.6. Object constructorswith unquoted keys.

{ foo : "bar" },
{ foo: [1, 2, 3, 4,5 6]},

{ foo : "bar", bar : "foo" },
{ "but you need the quotes here" : null }
Resul t:
{
"foo" : "bar"
}
{
“foo" : [1, 2, 3, 4, 5, 6]
}
{
"foo" : "bar",
"bar" : "foo"
}
{
"but you need the quotes here" : nul
}

Array Constructors

The syntax for creating arrays is identical to that of JSON (do you sense a growing
feeling that we are repeating ourselves? But it feels so good to say it): square brackets,
comma separated values.

28

Composing Constructors

Example5.7. Empty array constructors.

1
1

[

[1, 2, 3, 4, 5, 61,

["foo", [3.14, "Go"], { "foo" : "bar" }, true]
Resul t:

[]

[1, 2, 3, 4, 5, 6]

["foo", [3.14, "Go"], { "foo" : "bar" }, t
rue]

Square brackets are mandatory. Things can only be pushed so far.

Composing Constructors

Of course, JSONig would not be very interesting if all you could do is copy and paste
JSON documents. So now istime to get to the meat.

Because JSONiq expressions are fully composable, in objects and arrays constructors,
you can put way more than just atomic literals, object constructors and array
constructors: you can put any JSONiq expression. An expression isthe JISONiq building
block. You already know some (literals, constructors, comma, cast, instance of) and
plenty more will be introduced in the next part (arithmetics, logic, comparison, if-then-
else, try-catch, FLWORS that allow you to join, select, group, filter, project, streamin
windows, ...)

In order to illustrate composability, the following examples use a few of the many
operators you can Use:

» "to" for creating sequences of consecutive integers,

» "|" for concatenating strings,

» "+" for adding numbers,

» " for appending sequences (yes, you already know this one).
So here we go.

Inan array, the operand expression inside the square bracket will evaluated to asequence
of items, and these itemswill be copied and become members of the newly created array.

29

Composing Constructors

Example 5.8. Composable array constructors.

[1to 10],
["foo" || "bar", 1to 3, 2 + 2]

Resul t :
[11 21 31 41 51 61 7, 8, 9, 10]
["foobar", 1, 2, 3, 4]

In an object, the expression you use for the key must evaluate to an atomic - if it is not
astring, it will just get cast to it.

An error israised if the key expression is not an atomic.

Example 5.9. Composable object keys.

{ "foo" || "bar" : true },
{1+1: "foo" }

Resul t :
{
"foobar" : true
}
{
"2" : "foo"
}

And do not worry about the value expression: if it isempty, null will be used asavalue,
and if it contains two items or more, they will be wrapped into an array.

Example 5.10. Composable object values.

{ "foo" : 1 + 11},
{ "foo" : (), "bar" : (1, 2) }

Resul t:
{

Composing Constructors

"foo" : 2
}
{
"foo" : null,
"bar" : [1, 2]
}

The{]| [} constructor can be used to merge several objects.

Example 5.11. Merging object constructor.

{I { "foo" : "bar" }, { "bar" : "foo" } |}
Resul t:
{

"foo" : "bar",

"bar" : "foo"
}

An error israised if the operand expression does not evaluate to a sequence of objects.

31

32

Chapter 6. Collections

Even though you can build your own JSON values with JSONiq by copying-and-pasting
JSON documents, most of the time, your JSON datawill bein a collection.

We now introduce collections, because collections are perfect to illustrate the JSON
navigation syntax which will be introduced in the next section.

Collections are sequences of objects, identified by a name which isastring.

Adding or deleting collections from the set of known collections to a query processor,
and loading the data in a collection are implementation-dependent and outside of the
scope of this book.

We will just assume that there is a function named collection() that returns all objects
associated with the provided collection name.

Example 6.1. Getting all objectsfrom a collection.
col l ection("one-object")

Resul t:

{
"question” : "What NoSQL technol ogy shoul d
| use?"

}

Collections Used Throughout This
Book

For illustrative purposes, we will assume that we have the following collections:

* collection("one-object")

{
"question” : "What NoSQ technol ogy should I use?"

}

33

Collections Used
Throughout This Book

« collection("faq") - thisis a collection of StackOverflow FAQs.

"_id" @ "511C7C5C9A277C22D138802D",
"question_id" : 4419499,
"l ast_edit_date" : "2012-12-17T00: 02: 31",
"creation_date" : "2010-12-11T23:15:19",
"last_activity_date" : "2012-12-17T00: 02: 31",
"score" : 15,
"accepted_answer _id" : 4421601,
"title" : "MySQL and NoSQL: Help ne to choose the right one",
"tags" : ["php", "nysqgl", "nosgl", "cassandra"],
"view count" : 3972,
"owner" : {
"user_id" : 279538,
"di spl ay_nanme" : "cedivad",
"reputation” : 430,
"user _type" : "registered",
"profile_imge" : "http://ww.gravatar.conif avatar/b77f add2ba7
"link" : "http://stackoverfl ow. confusers/ 279538/ cedi vad",
"accept _rate" : 74
H
"link" : "http://stackoverfl ow. conf questi ons/ 4419499/ nysql - and- |
"is_answered" : true

"_id" @ "511C7C5C9A277C22D138802F",
"question_id" : 282783,
"l ast_edit_date" : "2012-04-30T22: 43: 02",
"creation_date" : "2008-11-12T02: 02: 42",
"last_activity_date" : "2012-04-30T22:43: 02",
"score" : 42,
"accepted_answer _id" : 282813,
"title" : "The Next-gen Dat abases”,
"tags" : ["sqgl", "database", "nosqgl", "non-rel ational -dat abase’
"view count” : 5266,
"owner" : {

"user_id" : 3932,

"di splay_nane" : "Randin",

Collections Used

Throughout This Book
"reputation” : 585,
"user _type" : "registered",
"profile_imge" : "http://ww.gravatar.con avat ar/ d9d7b:
"link" : "http://stackoverfl ow. confusers/3932/randi n",
"accept _rate" : 100
}1
"link" : "http://stackoverfl ow. conf questi ons/ 282783/t he- n
"is_answered" : true

« collection("answers") - thisisacollection of StackOverflow answers (to the previous
FAQs).

"_id" @ "511C7C5D9A277C22D13880C3",
"question_id" : 37823,
"answer _id" : 37841,
"creation_date" : "2008-09-01T12: 14: 38",
"last_activity_date" : "2008-09-01T12: 14: 38",
"score" : 7,
"is_accepted" : false,
"owner" : {
"user_id" : 2562,
"di spl ay_nane" : "Ubi guchi",
"reputation” : 1871,
"user _type" : "registered",
"profile_imge" : "http://ww.gravatar.conf avat ar/ 00b87:
"link" : "http://stackoverfl ow. conifusers/ 2562/ ubi guchi ™"

"_id" : "511C7C5D9A277C22D13880C4",
"question_id" : 37823,
"answer _id" : 37844,

"creation_date" : "2008-09-01T12: 16: 40",
"last_activity_date" : "2008-09-01T12: 16: 40",
"score" : 4,

"is_accepted" : false,

"owner" : {

35

Collections Used
Throughout This Book

"user_id" : 2974,

"di splay_nane" : "Rob Wells",

"reputation” : 17543,

"user _type" : "registered",

"profile_imge" : "http://ww.gravatar.con avatar/8769281d99f ¢
"link" : "http://stackoverfl ow confusers/2974/rob-wells",
"accept _rate" : 94

"_id" : "511C7C5F9A277C22D1388211",
"question_id" : 4419499,
"answer _id" : 4419542,

"creation_date" : "2010-12-11T23:24: 21",
"l ast_edit_date" : 1292112046,
"last_activity_date" : "2010-12-12TO0O0: 00: 46",
"score" : 17,
"is_accepted" : false,
"owner" : {
"user_id" : 236047,
"di splay_nanme" : "Victor Nicollet"
"reputation” : 14632,
"user _type" : "registered",
"profile_imge" : "http://ww.gravatar.con avat ar/e083220ac33l
"link" : "http://stackoverfl ow confusers/ 236047/ victor-nicoll:¢
"accept _rate" : 95
}
"_id" @ "51l1C7/C5F9A277C22D1388212",

"question_id" : 4419499,
"answer _id" : 4419578,

"creation_date" : "2010-12-11T23: 30: 42",
"last_activity_date" : "2010-12-11T23: 30: 42",
"score" : 1,
"is_accepted" : false,
"owner" : {
"user_id" : 510782,
"di spl ay_nane" : "descent 89",
"reputation” : 33,
"user_type" : "registered",
"profile_imge" : "http://ww.gravatar.con avat ar/d15c0949f 7el

36

Collections Used
Throughout This Book

"link" : "http://stackoverfl ow. confusers/510782/ descent

Many queriesin this book can be directly input into 28.i0's try-it-now sandbox, as these
collections are preloaded (thisis real-world data).

37

38

Chapter 7. JSON Navigation

Likein JavaScript or SQL or Java, it is possible to navigate through data.
JSONiq supports:

» Looking up the value of afield (given its string key) in an object.

» Looking up theitem at a given position (integer) in an array.

» Extracing all members of an array as a sequence of items.

* Filtering itemsfrom a sequence, retaining only theitemsthat match agiven criterium.

Object Navigation

The simplest way to havigate an object issimilar to JavaScript. Thiswill work as soon as
you do not push it too much: aphanumerical characters, dashes, underscores. The rule
for unquoted names is similar to keys in object constructions, and to variable names.
The empty sequenceis returned if no key isfound with the specified name.

Example 7.1. Object lookup.

{

"question" : "What NoSQL technol ogy should I use?"
}. questi on,
{

"question" : "What NoSQL technol ogy should I use?"
}. answer
Resul t:

"What NoSQL technol ogy should I use?"

Since JSONiq expressions are composable, you can also use any expression for the | eft-
hand side. Y ou might need parentheses depending on the precedence.

Example 7.2. Lookup on a single-object collection.

39

Object Navigation

col l ection("one-object").question
Resul t:
"What NoSQL technol ogy should I use?"
Thedot operator doesanimplicit mapping ontheleft-hand-side, i.e., it appliesthelookup

in turn on each item. Lookup on any item which is not an object (arrays and atomics)
results in the empty sequence.

Example 7.3. Object lookup with an iteration on several objects.

({ "foo" : "bar" }, { "foo" : "bar2" }).foo,
{ "ids" : collection("faq").question_id }
Resul t:

“bar"

“bar 2"

{

"ids" : [4419499, 282783]
}

Example 7.4. Object lookup on non-obj ects.

"foo".foo,
({
"question" : "What NoSQL technol ogy should I use?"
}1
["question", "answer"],
{ "question" : "answer" },

"question").question

Resul t:
"What NoSQL technol ogy should I use?"
"answer"

Of course, unquoted keys will not work for strings that are not unquoted names, e.g.,
if the field contains a dot or begins with a digit. Then you will need quotes. If you

40

Object Navigation

use a more general expression on the right-hand side of the dot, it must always have
parentheses.

Example 7.5. Quotes and parentheses for object lookup.

{

"my question" : "Wat NoSQ. technol ogy should |I use?"
}."ny question",

"my question" : "Wat NoSQ. technol ogy should I use?"
}.("my "]| "question")
Resul t:

"What NoSQL technol ogy should I use?"
"What NoSQL technol ogy should I use?"

The value returned by the right-hand side expression is cast to string. An error is raised

upon failure. This value may be the empty sequence, in which case the object lookup
also returns the empty sequence.

Example 7.6. Object lookup with a nested expression.

{
"question" : "What NoSQL technol ogy should I use?"
0,
{
"1" : "What NoSQ. technol ogy should I use?"
}- (1),
{
"1" : "What NoSQ. technol ogy should I use?"
;.1
Resul t:

"What NoSQL technol ogy should I use?"
"What NoSQL technol ogy should I use?"

Variables, or acontext item reference, do not need parentheses. Variables areintroduced
later, but here is a sneak peek:

41

Array Unboxing

Example 7.7. Object lookup with a variable.

let $field := "ny " || "question"
return {
"nmy question" : "What technol ogy should | use?"
}.$field
Resul t:

"What technol ogy should | use?"

Array Unboxing

The itemsin an array (which is an item) can be extracted as a sequence of items with
the[] postfix operator.

The argument must be (a singleton sequence of) one array or the empty sequence (in
which case the empty sequence is returned as well.

Example 7.8. Array unboxing.

[
"What NoSQL technol ogy should I use?",

"What is the bottl eneck in MapReduce?"
111,

for $array in collection("faq").tags
return $array[],

O]

Resul t:
An error was raised: invalid expression: synt
ax error, unexpected "]"

Sequence Filtering

A predicate allows filtering a sequence, keeping only items that fulfill it.

42

Sequence Filtering

The predicate is evaluated once for each item in the left-hand-side sequence. The
predicate expression can use 3 to refer to the item being processed, called the context
item.

If the predicate evaluates to an integer, it is matched against the item position in the | eft-
hand side sequence automatically.

Example 7.9. Predicate expression for picking an item at a given
position.

(1 to 10)[5],

(
"What NoSQ. technol ogy should I use?",
"What is the bottl eneck in MapReduce?"
)[2]
Resul t:
5

"What is the bottleneck in MapReduce?"
Otherwise, the result of the predicate is converted to a boolean.

All items for which the converted predicate result evaluates to true are then output.

Example 7.10. Predicate expression for filtering.

(
"What NoSQL technol ogy should | use?",

"What is the bottleneck in MapReduce?"
)[contains($$, "NoSQL")],

(1 to 10)[$$ nod 2 eq O]

Resul t:
"What NoSQL technol ogy should I use?"

oo PR~N

43

Array Navigation

10

Array Navigation

Once you know how to unbox an array and to filter a sequence, array lookup comes for
free. It fedls very much like opening a box of Swiss chocolate and then picking your
favorite:

* Unbox the array with [].

* Pick the $i-th item in the sequence using a predicate with an integer [$i].

Example 7.11. Array lookup.

["question", "answer"][][2],

guestions: |
"What NoSQL technol ogy should | use?",
{ "fag"” : "What is the bottleneck in MapReduce?" }

]
}.questions[][2].faq

Resul t:
An error was raised: invalid expression: synt
ax error, unexpected "]"

Part IlIl. JSONIqg Expressions

Chapter 8. Basic Operations

Now that we have shown how expressions can be composed, we can begin the tour of
all JSONiq expressions. First, we introduce the most basic operations.

Construction of Sequences

Comma Operator

Thecommaallowsyou to concatenate two sequences, or even singleitems. Thisoperator
has the lowest precedence of all, so do not forget the parentheses if you would like to
change this.

Also, the comma operator isassociative -- in particular, sequences do not nest. Y ou need
to use arrays in order to nest.

Example 8.1. Comma.
1, 2, 3, 4, 5,
{ "foo" : "bar" }, [1],

1+1, 2+ 2,
(1, 2, (3, 4), 5

Resul t:

A0 WDNPRE

"foo" : "bar"

1]

WNEFEA~ANT

47

Range Operator

4
5

Range Operator

With the binary operator "to", you can generate larger sequences with just two integer
operands.

If the left operand is greater than the right operand, an empty sequence is returned.

If an operand evaluates to something el se than asingle integer, an error israised. There
is one exception with the empty sequence, which behavesin a particular way for most
operations (see below).

Example 8.2. Range operator.

1 to 10,
10 to 1

Resul t :

P OO~NOOUOTA,WNPE

0

Parenthesized Expressions

Expressions take precedence on one another. For example, addition has a higher
precedence than the comma. Parentheses allow you to change precedence.

If the parentheses are empty, the empty sequenceis produced.

Example 8.3. Empty sequence.

48

Arithmetics

(2+3) * 5,
()

Resul t :
25

Arithmetics

JSONiq supports the basic four operations, as well integer division and modulo. You
should keep in mind that, as is the case in most programming languages, multiplicative
operations have precedence over additive operations. Parentheses can override it, as
explained above.

Example 8.4. Basic arithmetic operations with precedence override.
1* (2+3) +7idiv2- (-8 nod?2
Resul t:

8

Dates, times and durations are also supported in a natural way.
Example 8.5. Using basic operations with dates.
date("2013-05-01") - date("2013-04-02")
Resul t:

" P29D"

If any of the operandsis a sequence of more than one item, an error is raised.

If any of the operands is not a number, a date, a time or a duration, or if the operands
are not compatible (say a number and atime), an error is raised.

Do not worry if the two operands do not have the same number type, JSONiqg will do
the adequate conversions.

49

String Concatenation

Example 8.6. Basic arithmetic operations with different, but
compatible number types

2.3e4 + 5

Resul t:
23005

String Concatenation

Two strings or more can be concatenated using the concatenation operator. An empty
sequence istreated like an empty string.

Example 8.7. String concatenation.

"Captain" || [] "Kirk",

"Captain" || () || "Kirk"

Resul t:

"Captain Kirk"

" Capt ai nKi r k"
Comparison

Atomics can be compared with the usual six comparison operators (equality, non-
equality, lower-than, greater-than, lower-or-equal, greater-or-equal), and with the same
two-letter symbols asin MongoDB.

Comparisonisonly possible between two compatible types, otherwise, an error israised.

Example 8.8. Equality comparison.

1+ 1eq 2
11t 2

50

Empty Sequence Behavior

Resul t:
true
true

null can be compared for equality or inequality to anything - it is only equal to itself so
that false is returned when comparing if for equality with any non-null atomic. Trueis
returned when comparing it with non-equality with any non-null atomic.

Example 8.9. Equality and non-equality comparison with null.

1 eq null,
"foo" ne null,
null eq null

Resul t :
fal se
true
true

For ordering operators (It, le, gt, ge), null is considered the smallest possible value (like
in JavaScript).

Example 8.10. Ordering comparison with null.
null It 1

Resul t:
true

Comparisons and logic operators are fundamental for a query language and for
the implementation of a query processor as they impact query optimization greetly.
The current comparison semantics for them is carefully chosen to have the right
characteristics as to enable optimization.

Empty Sequence Behavior

In range operations, arithmetics and comparisons, if an operand is the empty sequence,
then the result is the empty sequence as well.

51

Logic

Example 8.11. The empty sequence used in basic operations.

() to 10,
1to (),
1+(),

() eq 1,
() ge 10

Resul t :

Logic

JSONIq logics support is based on two-valued logics: there is just true and false and
nothing else.

Non-boolean operands get automatically converted to either true or false, or an error is
raised. The boolean() function performs a manual conversion. The rules for conversion
were designed in such away that it feels "natural”. Here they are:

* Anempty sequence is converted to false.

A singleton sequence of one null is converted to false.

» A singleton sequence of one string is converted to true except the empty string which
is converted to false.

» A singleton segquence of one number is converted to true except zero or NaN which
are converted to false.

» Operand singleton sequences of any other item cannot be converted and an error is
raised.

» Operand sequences of more than one item cannot be converted and an error is raised.

Example 8.12. Conversion to booleans.

52

Propositional Logic

"enpty-sequence” : bool ean(()),
"null™ : boolean(null),
"non-enpty-string” : bool ean("foo"),
"enpty-string” : boolean(""),
"zero" : bool ean(0),
"not-zero" : bool ean(1e42)

b

null and "foo"

Resul t:

{
"enpty-sequence" : false
"null" : fal se,
"non-enmpty-string” : true,
"enpty-string" : fal se
"zero" : false,
"not-zero" : true

}

fal se

Propositional Logic

JSONiq supports the most famous three boolean operations: conjunction, disjunction,
and negation. Negation has the highest precedence, then conjunction, then disjunction.
Comparisons have a higher precedence than all logical operations. Parentheses can
override.

Example 8.13. Logics with booleans.

true and (true or not true),
1+1eq2o0r not 1+1eq3

Resul t :
true
true

A sequence with morethan oneitem, or singleton objects and arrays cannot be converted
to aboolean. An error israised if it is attempted.

53

First-Order Logic
(Quantified Variables)

Unlike in C++ or Java, you cannot rely on the order of evaluation of the operands of a
boolean operation. The following query may return true or may raise an error.

Example 8.14. Non-deter minism in presence of errors.
true or (1 div 0)

Resul t :
true

First-Order Logic (Quantified Variables)

Given a sequence, it is possible to perform universal or existential quantification on a
predicate.

Example 8.15. Universal and existential quantifiers.

every $i in 1 to 10
satisfies $i gt O,

some $i in-5to5, $ in1l1lto 10
satisfies $i eq 9§

Resul t :
true
true

Variables can be annotated with atype. If no typeis specified, item* is assumed. If the
type does not match, an error is raised.

Example 8.16. Existential quantifier with type checking.

sone $i as integer in -5to 5, $j as integer
inlto 10
satisfies $i eq $

Resul t:
true

Builtin Functions

Builtin Functions

The syntax for function callsis similar to many other languages.

Likein C++ (namespaces) or Java (packages, classes), functionslivein namespaces that
are URIs.

Although it is possible to fully write the name of afunction, namespace included, it can
be cumbersome. Hence, for convenience, a namespace can be associated with a prefix
that acts as a shortcut.

JSONiq supports three sorts of functions:
« Builtin functions: these have no prefix and can be called without any import.

 Locad functions. they are defined in the prolog, to be used in the main query. They
have the prefix local:. Chapter 12, Prologs describes how to define your own local
functions.

» Imported functions: they are defined in a library module. They have the prefix
corresponding to the alias to which the imported module has been bound to.
Chapter 13, Modules describes how to define your own modules.

For now, we only introduce how to call builtin functions -- these are the simplest, since
they do not need any prefix or explicit namespace.

Example 8.17. A builtin function call.

keys({ "foo" : "bar", "bar" : "foo" }),
concat ("foo", "bar")

Resul t:
"foo"
"bar"
"foobar"

Some builtin functions perform aggregation and are particularly convenient:

Example 8.18. A builtin function call.

55

Builtin Functions

sum(1l to 100),
avg(1l to 100),
count((1 to 100)[$$ nmod 5 eq 0])

Resul t:
5050
50.5
20

Remember that JSONiq is a strongly typed language. Functions have signatures, for
example sum() expects a sequence of numbers. An error israised if the actual types do
not match the expected types.

Also, calling a function with two parameters is different from calling a function with
one parameter that is a sequence with two items. For the latter, extra parentheses must
be added to make sure that the sequence is taken as a single parameter.

Example 8.19. Calling a function with a sequence.

count ((1, 2, 3, 4))

Resul t:
4

56

Chapter 9. Control Flow
Expressions

JSONiq supports control flow expressions such as conditional expressions (if then else),
switch, and typeswitch. At least the first two should be familiar to any programmer.

Conditional Expressions

A conditional expression allows you to pick the one or the other value depending on a
boolean value.

Example9.1. A conditional expression.

if (1 +1eq 2)

then { "foo" : "yes" }
else { "foo" : "false" }
Resul t:
{

"foo" : "yes"
}

The behavior of the expression inside theif is similar to that of logical operations (two-
valued logics), meaning that non-boolean values get converted to aboolean. The exists()
builtin function can be useful to know if a sequenceis empty or not.

Example 9.2. A conditional expression.

if (null) then { "foo" : "yes" }
else { "foo" : "no" },
if (1) then { "foo" : "yes" }
else { "foo" : "no" },
if (0) then { "foo" : "yes" }
else { "foo" : "no" },
if ("foo") then { "foo" "yes" }

57

Conditional Expressions

else { "foo" : "no" },
if ("") then { "foo" : "yes" }
else { "foo" : "no" },
if (()) then { "foo" : "yes" }
else { "foo" : "no" },

if (exists(collection("fagq"))) then { "foo"

Resul t :
{

"foo"
}
{

"foo"
}
{

"foo"
}
{

"foo"
}
{

"foo"
}
{

"foo"
}
{

"foo"
}

el se { "foo"

"no"

"yes"

"no"

"yes"

"no"

"no"

"yes"

"yes" }
"no" }

Note that the else clause is mandatory (but can be the empty sequence)

Example 9.3. A conditional expression.

if (1+1 eq 2) then { "foo" : "yes" } else ()

Resul t:
{

58

Switch expressions

}
Switch expressions

f oo yes

Switch expressions are very similar to C++. A switch expression evaluates the
expression inside the switch. If it is an atomic, it compares it in turn to the provided
atomic values (with the semantics of the eq operator) and returns the value associated
with the first matching case clause.

Example 9.4. A switch expression.

switch ("foo")

case "bar" return "foo"
case "foo" return "bar"
default return "none"

Resul t:
n bar n

If the provided value is not an atomic, an error israised (thisis also similar to C++).
If the value does not match any of the expected values, the default is used.

Note that the default clause is mandatory (but can be the empty sequence)

Example 9.5. A switch expression.

switch ("no-match")
case "bar" return "foo"
case "foo" return "bar"
default return "none"

Resul t :
"none"

The case clauses support composability of expressionsaswell - an opportunity to remind
you about the precedence of the comma.

59

Try-Catch expressions

Example 9.6. A switch expression.

switch (2)

case 1 + 1 return "foo"

case 2 + 2 return "bar"

default return "none",

switch (true)

case 1 + 1 eq 2 return "1 + 1 is 2"

case 2 + 2 eq 5 return "2 + 2 is 5"
default return "none of the above is true"

Resul t :
"foo"
"1 +1is 2"

Try-Catch expressions

A try catch expression evaluates the expression inside the try block and returns its
resulting value.

However, if an error is raised during execution, the catch clause is evaluated and its
result value returned.

Example9.7. A try catch expression.
try { 1 div 0} catch * { "Caught!" }

Resul t:
" Caught!"

Only errors raised within the lexical scope of the try block are caught.

Example 9.8. An error outside of atry-catch expression.

let $x := 1 div O
return try { $x }
catch * { "Caught!" }

60

Try-Catch expressions

Resul t:
An error was raised: division by zero

Errors that are detected statically within the try block, for example syntax errors, are
still reported statically.

Note that this applies also if the engine is capable of detecting a type error statically,
while another engine might only discover it at runtime and catch it. Y ou should keep
thisin mind, and only use try-catch expressions as a safety net.

Example 9.9. A try catch expression with a syntax error.
try { x } catch * { "Caught!" }

Resul t:

An error was raised: invalid expression: synt
ax error, a path expression cannot begin wth
an axis step

Example 9.10. A try catch expression with atypeerror.
try { "foo" + "bar" } catch * { "Caught!" }

Resul t:
"Caught!"

61

62

Chapter 10. FLWOR
Expressions

FLWOR expressions are probably the most powerful JISONiq construct and correspond
to SQL's SELECT-FROM-WHERE statements, but they are more general and more
flexible. In particular, clauses can amost appear in any order (apart that it must begin
with afor or let clause, and end with areturn clause).

Hereisabit of theory on how it works.

A clause binds valuesto some variables according to its own semantics, possibly several
times. Each time, a tuple of variable bindings (mapping variable names to sequences)
is passed on to the next clause.

This goes all the way down, until the return clause. The return clause is eventually
evaluated for each tuple of variable bindings, resulting in a sequence of items for each
tuple. It is not to be confused with Java or C++ return statements, as it does not exit or
break the loop.

These sequences of items are concatenated, in the order of the incoming tuples, and the
obtained sequence is returned by the FLWOR expression.

We are now giving practical examples with a hint on how it maps to SQL -- but first,
we need to introduce variable syntax.

Variables

Values can be bound to variables within a certain scope. Variable references always
begin with adollar sign: $foo.

Variables are immutables, but variable bindings can be hidden with a binding to a
variable with the same name.

Variables can be declared by FLWOR expressions as shown in this chapter, but also as
global variables or in typeswitch expressions as will be shown later.

There is a special variable which is called the context item and which is denoted with $
$. You aready saw it in the section called “ Sequence Filtering”.

63

For Clauses

For Clauses

For clauses alow iteration on a sequence.

For each incoming tuple, the expression in the for clause is evaluated to a sequence.
Each item in this sequenceisin turn bound to the for variable. A tupleishence produced
for each incoming tuple, and for each item in the sequence produced by the for clause
for thistuple.

For example, the following for clause:

for $x in 1 to 3

produces the following stream of tuples (note how JSON syntax is so convenient that it
can be used to represent these tuples):

{"sx" : 1)
{ "sx" : 2)
{ "sx" 3}

The order in which items are bound by the for clause can be relaxed with unordered
expressions, as described later in this section.

The following query, using a for and a return clause, is the counterpart of SQL's
"SELECT display_name FROM answers'. $x is bound in turn to each item in the
answers collection.

Example 10.1. A for clause.

for $x in collection("answers")
return $x. owner. di spl ay_name

Resul t :
" Ubi guchi "
"Rob Wells"
"Victor Nicollet"

64

For Clauses

"descent 89"

For clause expressions are composable, there can be several of them.

Example 10.2. Two for clauses.

for $x in (1, 2
for $y in (1, 2
return 10 * $x +

w w

)
)

$

<

Resul t :
11
12
13
21
22
23
31
32
33

Example 10.3. A for clause with two variables.

for $x in (1, 2, 3), $yin (1, 2, 3)
return 10 * $x + $y

Resul t:
11
12
13
21
22
23
31
32
33

A for variable is visible to subsequent bindings.

65

For Clauses

Example 10.4. Two for clauses.

for $x in (

~N AR
© Ul N
© o w

[
[
[
Sy in $x()
return $y,

for $x in collection("faqg"),

Sy in $x.tags()

return {
"id" : $x.question_id,
"tag" : $y
}
Resul t:
1
2
3
4
5
6
7
8
9
{
"id" : 4419499,
"tag" : "php"
}
{
"id" : 4419499,
"tag" : "nysql"
}
{
"id" : 4419499,
"tag" : "nosqgl"
}
{
"id" : 4419499,
"tag" : "cassandra"
}

66

"non-rel ati onal - dat abase"

"id" : 282783,
"tag" : "sql"
}
{
"id" : 282783,
"tag" "dat abase”
}
{
"id" : 282783,
"tag" "nosql "
}
{
"id" : 282783,
"t ag"
}

It is also possible to bind the position of the current item in the sequenceto avariable.

Example 10.5. A for clause with a position variable.

for $x at $position in collection("answers")

return {
"old id"
"new id"

Resul t:

{
"old id"

"new i d"

"old id"
"new i d"

"old id"
"new i d"

$x. answer _i d,

$posi tion

37841,

37844,

4419542,
3

67

For Clauses

{
"old id" : 4419578,

"new id" : 4

}

JSONiq supports joins. For example, the counterpart of "SELECT q.title AS question,
g.question_id FROM faq q JOIN answers a ON g.question_id = a.question_id" is:

Example 10.6. A regular join.
for $question in collection("faq"),

$answer in collection("answers")
[$$. question_id eq $question.question_id]

return { "question" : $question.title,
“answer score" : $answer.score }

Resul t:
{

"question” : "MySQ and NoSQL: Help me to
choose the right one",

"answer score" : 17
}
{

"question” : "MySQ and NoSQL: Help me to
choose the right one",

"answer score" : 1
}

Note how JSONiq handles semi-structured data in a flexible way.

Outer joins are also possible with "allowing empty", i.e., output will aso be produced
if there is no matching answer for a question. The following query is the counterpart of
"SELECT q.itle AS question, g.question_id FROM faq g LEFT JOIN answers a ON
g-.question_id = a.question _id".

Example 10.7. An outer join.

for $question in collection("faq"),
$answer allowing enpty in collection("answers")

68

Where Clauses

[$%.question_id eq $question. question_id]

return { "question" : $question.title,
“answer score" : $answer.score }
Resul t:
{
"question" : "MySQ. and NoSQL: Help nme to
choose the right one",
"answer score" : 17
}
{
"question" : "MySQ. and NoSQL: Help nme to
choose the right one",
"answer score" : 1
}
{
"question" : "The Next-gen Dat abases",
"answer score" : null
}

Where Clauses

Where clauses are used for filtering.

For each incoming tuple, the expression in the where clause is evaluated to a boolean
(possibly converting an atomic to a boolean). If this boolean is true, the tuple is
forwarded to the next clause, otherwise it is dropped.

The following query corresponds to "SELECT g.title as question, g.question_id as id
FROM fag WHERE CONTAINS(question, '"NoSQL")".

Example 10.8. A where clause.

for $question in collection("faq")
where contains($question.title, "NoSQ")

return {
"question" : $question.title,
"id" : $question.question_id
}

69

Order Clauses

Resul t:
{

"question” : "MySQ and NoSQL: Help me to
choose the right one",

"“id" : 4419499

}

JSONiq can do joins with where clauses, too:

Example 10.9. A join with a where clause.

for $question in collection("faq"),
$answer in collection("answers")
wher e $question. question_id eq $answer. question_id
return {
"question" : $question.title,
"answer score" : $answer.score

Resul t:
{

"question" : "MySQ and NoSQL: Help me to
choose the right one",

"answer score" : 17
}
{

"question" : "MySQ and NoSQL: Help me to
choose the right one",

"answer score" : 1

}
Order Clauses

Order clauses are for reordering tuples.

For each incoming tuple, the expression in the where clause is evaluated to an atomic.
The tuples are then sorted based on the atomics they are associated with, and then
forwarded to the next clause.

Like for ordering comparisons, null values are always considered the smallest.

70

Order Clauses

The following query is the counterpart of SQL's "SELECT a.display_name, a.score
FROM answers a ORDER BY a.display name".

Example 10.10. An order by clause.

for $answer in collection("answers")
order by $answer. owner. di spl ay_nane

return {
"owner" : $answer.owner.di spl ay_nane,
"score" : $answer.score
}
Resul t :
{
"owner" : "Rob Wells",
"score" : 4
}
{
"owner" : "Ubiguchi",
"score" : 7
}
{
"owner" : "Victor Nicollet",
"score" : 17
}
{
"owner" : "descent 89",
"score" : 1
}

Multiple sorting criteria can be given - they are treated with the semantics of a
lexicographic order, that is, incoming tuples are first sorted according to the first
criterion, and in case of equality the second criterion is used, etc.

Example 10.11. An order by clause with two criteria.

for $answer in collection("answers")
order by $answer.owner. di spl ay_nane,
$answer . score

71

Order Clauses

return {
"owner" : $answer.owner.di spl ay_nane,
"score" : $answer.score

}

Resul t :

{
"owner" : "Rob Wells",
"score" : 4

}

{
"owner" : "Ubiguchi",
"score" : 7

}

{
"owner" : "Victor Nicollet",
"score" : 17

}

{
"owner" : "descent 89",
"score" : 1

}

For each criterion, it can be specified whether the order is ascending or descending.
Empty sequences are allowed and it can be chosen whether to put them first (even before
null) or last (even after null).

Example 10.12. An order by clause with ordering options.

for $answer in collection("answers")
order by $answer. owner. di spl ay_nane
descendi ng enpty greatest,
$answer . score ascendi ng

return {
"owner" $answer . owner . di spl ay_nane,
"score" $answer . score

Resul t:

72

Group Clauses

{
"owner" : "descent 89",
"score" : 1

}

{
"owner" : "Victor Nicollet",
"score" : 17

}

{
"owner" : "Ubiguchi",
"score" . 7

}

{
"owner" : "Rob Wells",
"score" : 4

}

An eror is raised if the expression does not evaluate to an atomic or to the empty
sequence.

Group Clauses

Grouping is also supported, likein SQL.

For each incoming tuple, the expression in the group clause is evaluated to an atomic.
Thevalue of thisatomic is called a grouping key. The incoming tuples are then grouped
according to the grouping key -- one group for each value of the grouping key.

For each group, atupleisoutput, in which the grouping variable is bound to the group's
key.

Example 10.13. A group by clause.

for $answer in collection("answers")

group by $question := $answer.question_id
return { "question" : $question }

Resul t:

{

"question" : 4419499

73

Group Clauses

}

{
"question" : 37823

}

Asfor each other (non-grouping) variable, the original values of the variable within one
group are all concatenated into a single sequence, which is bound to this variablein the
output tuple for this group. Aggregations can be done on these variables.

Thefollowing query isequivalent to "SELECT question_id, COUNT(*) FROM answers
GROUP BY question _id".

Example 10.14. A group by clause using count aggr egation.

for $answer in collection("answers")

group by $question := $answer.question_id
return {
"question" : $question,
"count" : count ($answer)
}
Resul t:
{
"question" : 4419499,
"count" : 2
}
{
"question" : 37823,
"count" : 2
}

The following query is equivalent to "SELECT question_id, AVG(score) FROM
answers GROUP BY question_id".

Example 10.15. A group by clause using aver age aggr egation.

for $answer in collection("answers")
group by $question := $answer.question_id
return {

74

Group Clauses

"question" : $question,
"average score" : avg($answer.score)
}
Resul t:
{
"question" : 4419499,
"average score" : 9
}
{
"question" : 37823,
"average score" : 5.5
}

JSONiq's group by is more flexible than SQL and is fully composable.

Example 10.16. A group by clause with a nested expression.

for $answer in collection("answers"

group by $question := $answer.question_id
return {
"question" : $question,
"scores" : [$answer.score]
}
Resul t:
{
"question" : 4419499,
"scores" : [17, 1]
}
{
"question" : 37823,
"scores" : [7, 4]
}

Unlike SQL, JSONiq does not need a having clause, because a where clause works
perfectly after grouping as well.

The following query is the counterpart of "SELECT question_id, COUNT(*) FROM
answers GROUP BY question_id HAVING COUNT(*) > 1"

75

Let Clauses

Example 10.17. A group by clause with a post-grouping condition.

for $answer in collection("answers")

group by $question := $answer.question_id
where count ($answer) gt 1
return {
"question" : $question,
"count" : count ($answer)
}
Resul t:
{
"question" : 4419499,
"count" : 2
}
{
"question" : 37823,
"count" : 2
}
Let Clauses

Let bindings can be used to define aliases for any sequence, for convenience.

For each incoming tuple, the expression in the let clause is evaluated to a sequence. A
binding is added from this sequence to the let variable in each tuple. A tuple is hence
produced for each incoming tuple.

Example 10.18. A let clause.

for $answer in collection("answers")

let $qgid := $answer.question_id
group by $question := $qid
l et $count := count ($answer)
where $count gt 1
return {
"question" : $question,
"count" : $count

76

Count Clauses

Resul t:

{
"question" : 4419499,
"count" : 2

}

{
"question" : 37823,
"count" : 2

}

Note that it is perfectly fine to reuse a variable name and hide a variable binding.

Example 10.19. A let clause reusing the same variable name.

for $answer in collection("answers")
let $qgid := $answer.question_id
group by $qid
l et $count := count ($answer)
where $count gt 1
l et $count := size(

col lection("faq")

[$$.question_id eq $qgid].tags

)
return {
"question” : collection("faq")
[$$. question_id eq $qgid].title,
"count" : $count
}
Resul t:

An error was raised: enpty-sequence() can not
be pronpoted to paraneter type array() of fun
ction size()

Count Clauses

For each incoming tuple, abinding from the position of this tuple in the tuple stream to
the count variable is added. The new tuple is then forwarded to the next clause.

7

Map Operator

Example 10.20. A count clause.

for $question in collection("faq")
order by size($question.tags)
count $count

return {
"id" : $count,
"faq" : $question.title
}
Resul t:
{
id" o1,
"fag" : "MySQ. and NoSQ.: Help nme to choos
e the right one"
}
{
"id" oo 2,
"fag" : "The Next-gen Dat abases"
}

Map Operator

JSONiq provides a shortcut for afor-return construct, automatically binding each item
in the left-hand-side sequence to the context item.

Example 10.21. A simple map.
(1to 10) ! ($$ * 2)

Resul t :
2
4
6
8
10
12
14

78

Composing FLWOR

Expressions
16
18
20

Example 10.22. An equivalent query.

for $i in 1 to 10
return $i * 2

Resul t :
2
4
6
8
10
12
14
16
18
20

Composing FLWOR Expressions

Like al other expressions, FLWOR expressions can be composed. In the following
example, aFLWOR is nested in an existential quantifier, nested inaFLWOR, nested in
afunction call, nested in aFLWOR, nested in an array constructor:

Example 10.23. Nested FLWORs.

for $answer in collection("answers")
l et $oid := $answer.owner.user_id
wher e count (
for $question in collection("faq")
wher e
sonme $ot her - answer
in collection("answers")
[$$. question_id eq $question.question_id

79

Ordered and
Unordered Expressions

and
$$. owner . user _id eq $oid]
satisfies
$ot her - answer . score gt $answer.score
return $question
) ge 2
return $answer.owner. di spl ay_nane

]

Resul t:

[]

Ordered and Unordered
Expressions

By default, the order in which afor clause bindsits items isimportant.

This behaviour can be relaxed in order give the optimizer more leeway. An unordered
expression relaxes ordering by for clauses within its operand scope:

Example 10.24. An unordered expression.

unordered {
for $answer in collection("answers")
wher e $answer.score ge 4
return $answer

}
Resul t:
{
"_id" @ "511C7/C5D9A277C22D13880C3",
"question_id" : 37823,
"answer _id" : 37841,
"creation_date" : "2008-09-01T12: 14: 38",
"last_activity_date" : "2008-09-01T12:14:3
8",
"score" : 7,
"is_accepted" : false,

80

Ordered and
Unordered Expressions

"owner" : {
“user_id" : 2562,
"di spl ay_nanme" : "Ubiguchi",
"reputation” : 1871,
"user _type" : "registered"
"profile_image" : "http://ww.gravatar.c

ont avat ar/ 00b87a917ec763c0c051dc6b8c06f 4027d=
i denti con&anp; r =PG',

"l'ink" : "http://stackoverfl ow. confusers
/ 2562/ ubi guchi "

}
}

{
"_id" @ "511C/C5D9A277C22D13880C4",

"question_id" : 37823,
"answer _id" : 37844,
"creation_date" : "2008-09-01T12: 16: 40"
"last_activity_date" : "2008-09-01T12:16:4
0",
"score" : 4,
"is_accepted" : false
"owner" : {
"user_id" : 2974,
"di spl ay_nanme" : "Rob Wells",
"reputation" : 17543,
"user _type" : "registered"
"profile_image" : "http://ww.gravatar.c
onf avat ar/ 8769281d99f 8f e9c208f d6a926c383d17d=
i denti con&anp; r =PG',

"l'ink" : "http://stackoverfl ow. confusers
[2974/ r ob-wel | s",
"accept_rate" : 94
}
}
{
"_id" @ "511C/C5F9A277C22D1388211",

"question_id" : 4419499,
"answer _id" : 4419542,

"creation_date" : "2010-12-11T23:24:21",
"last_edit_date" : 1292112046,
"last_activity_date" : "2010-12-12TO0O0: 00: 4

6" ’

Ordered and
Unordered Expressions

"score" : 17,

"is_accepted" : false,

"owner" : {
"user_id" : 236047,
"di splay_name" : "Victor Nicollet",
"reputation" : 14632,
"user _type" : "registered",
"profile_image" : "http://ww.gravatar.c

om avat ar/ e083220ac33b47364d345eac8f 017919?2d=
i denti con&anp; r =PG',

"l'ink" : "http://stackoverfl ow. confusers
[236047/ victor-nicollet",
"accept_rate" : 95

}
}

An ordered expression can be used to reactivate ordering behaviour in a subscope.

Example 10.25. An ordered expression.

unor dered {
for $question in collection("faq")
wher e exi sts(
ordered {
for $answer at $i in collection("answers")
where $i eq 5
wher e $answer. question_id
eq $question. question_id
return $answer
}
)

return $question

}

Resul t:

82

Chapter 11. Expressions
Dealing with Types

We have already introduced the sequence type syntax. It is now time to introduce the
expressions that deal with types.

Instance-of Expressions

A quick glimpse on this expression was already given. An instance expression can be
used to tell whether a JSONiq value matches a given sequence type, likein Java.

Example 11.1. Instance of expression.

1 instance of integer

1 instance of string,

"foo" instance of string,

{ "foo" : "bar" } instance of object,

({ "foo" : "bar" }, { "bar" : "foo" })
i nstance of json-itemt,

[1, 2, 3] instance of array?,

() instance of ()

Resul t:
true
fal se
true
true
true
true
true

Treat Expressions

A treat expression just forwardsits operand value, but only after checking that a JSONiq
value matches a given sequence type. If it isnot the case, an error is raised.

83

Castable Expressions

Example 11.2. Treat as expression.

1 treat as integer,

"foo" treat as string,

{ "foo" : "bar" } treat as object,

({ "foo" : "bar" }, { "bar" : "foo" })
treat as json-itemt,

[1, 2, 3] treat as array?,

() treat as ()

Resul t :
1
n f Ooll

"foo" : "bar"

"foo" : "bar"

{

"bar" : "foo"
}
[1, 2, 3]

Example 11.3. Treat as expression (failing).
1 treat as string

Resul t:
An error was raised: "xs:integer" cannot be t
reated as type xs:string

Castable Expressions

A castable expression checks whether a JSONiq value can be cast to a given atomic type
and returns true or false accordingly. It can be used before actually casting to that type.

The question mark allows for an empty sequence.

Cast Expressions

Example 11.4. Castable as expression.

"1" castabl e as integer,

"foo" castable as integer,

"2013-04- 02" castable as date,

() castable as date,

("2013-04-02", "2013-04-03") castable as date,
() castable as date?

Resul t :
true
fal se
true
fal se
fal se
true

Cast Expressions

A cast expression casts a (single) JSONiq value to a given atomic type. The resulting
valueis annotated with this type.

Also here, the question mark allowsfor an empty sequence. An error israised if the cast
is unsuccessful.

Example 11.5. Cast as expression.

"1" cast as integer,
"2013-04- 02" cast as date,
() cast as date?,
"2013-04- 02" cast as date?

Resul t:
1
"2013- 04- 02"
"2013- 04- 02"

85

Typeswitch Expressions

Example 11.6. Cast as expression (failing).

("2013-04-02", "2013-04-03") cast as date,
"foo" cast as integer,
() cast as date

Resul t:

An error was raised: sequence of nore than on
e itemcan not be cast to type with quantifie
r'1 or '?

Typeswitch Expressions

A typeswitch expressions tests if the value resulting from the first operand matches a
given list of types. The expression corresponding to the first matching case is finally
evaluated. If there is no match, the expression in the default clause is evaluated.

Example 11.7. Typeswitch expression.

typeswitch("foo")
case integer return "integer"
case string return "string"
case object return "object"
default return "other"

Resul t:
"string"

In each clause, it is possible to bind the value of the first operand to avariable.

Example 11.8. Typeswitch expression.

typeswi tch("foo")
case $i as integer return $i + 1
case $s as string return $s || "foo"
case $0 as object return [$0]
default $d return $d

86

Typeswitch Expressions

Resul t:
"f oof 00"

The vertical bar can be used to alow several typesin the same case clause.

Example 11.9. Typeswitch expression.

typeswitch("foo")
case $a as integer | string
return { "integer or string" : %$a }
case $o0 as object
return [$o]
defaul t $d
return $d

Resul t :

{

"integer or string"

}

foo

87

88

Part IV. Prolog,
Modules and Functions

Chapter 12. Prologs

This section introduces prologs, which alow declaring functions and global variables
that can then be used in the main query. A prolog aso allows setting some default
behaviour.

The prolog appears before the main query and is optional. It can contain setters and
module imports, followed by function and variable declarations.

Module imports are explained in the next chapter.

Setters.
Setters allow to specify a default behaviour for various aspects of the language.

Default Ordering Mode

This specifies the default behaviour of for clauses, i.e., if they bind tuples in the order
in which items occur in the binding sequence. It can be overriden with ordered and
unordered expressions.

Example 12.1. A default ordering setter.

decl are orderi ng unordered;
for $answer in collection("answers")

return {
"owner" : $answer.owner. di spl ay_nane,
"score" : $answer.score

}

Resul t :

{
"owner" : "Ubiguchi",
"score" . 7

}

{
"owner" : "Rob Wells",
"score" : 4

91

Default Ordering Behaviour

for Empty Sequences
}
{
"owner" : "Victor Nicollet",
"score" : 17
}
{
"owner" : "descent 89",
"score" : 1
}

Default Ordering Behaviour for Empty
Sequences

This specifies whether empty sequences come first or last in an ordering clause. It can
be overriden by the corresponding directivesin such clauses.

Example 12.2. A default ordering for empty sequences.

decl are default order enpty | east;
for $x in ({ "foo" : "bar" }, {})
order by $x.foo

return $x

Resul t :

{
}
{

}

"foo" : "bar"

Default Decimal Format

This specifies a default decimal format for the builtin function format-number().

Example 12.3. A default decimal for mat setter.

decl are default decinal -fornmat

92

Namespaces

deci nal - separator = ","
gr oupi ng-separator =" *";
format - nunber (12345. 67890, "# ###, ##")

Resul t:
"12 345, 68"

Namespaces

Variables and functions live in namespaces that are URIs -- the semantics is similar
to that of C++ namespaces. For convenience, namespaces are associated with a much
shorter alias, and this alias can be used as a prefix to avariable or afunction.

Until now, we only dealt with main queries. In main queries, thenamespacealiaslocal: is
predefined so that global variables and functions that arelocal to the main query can use
this alias, for example local: myvariable or local:myfunction(). This alias is associated
with a namespace, but which namespace it is not relevant for writing queries.

For variables, the alias is optional -- variables not prefixed with an alias live in no
namespace.

For functions, the absence of aiasisonly allowed for builtin functions. Builtin functions
livein their own special namespace.

Other namespaces and aliases can be defined as well with imported library modules.
Thisis defined in the next chapter.

Global Variables

Variables can be declared global. Global variables are declared in the prolog.

Example 12.4. Global variable.

decl are vari abl e $obj
:={ "foo" : "bar" },
decl are vari abl e $nunbers
= (1, 2, 3, 4, 5);
$obj ,
[$nunbers]

93

Global Variables

Resul t:
{

"foo" : "bar"
}

[1, 2, 3, 4, 5]

Y ou can specify a sequence type for a variable. If the type does not match, an error is
raised. In general, you do not need to worry too much about variable types except if
you want to make sure that what you bind to avariable isreally what you want. In most
cases, the engine will take care of typesfor you.

Example 12.5. Global variable with a type.

decl are variabl e $obj as obj ect

= { "foo" : "bar" };
$obj
Resul t:
{
"foo" : "bar"
}

An external variable allows you to pass a value from the outside environment, which
can be very useful. Each implementation can choose its own way of passing avaue to
an external variable. A default value for an externa variable can also be supplied in case
noneis provided from outside.

Example 12.6. An external global variable with a default value.

decl are vari abl e $obj external

:={ "foo" : "bar" },
$obj
Resul t:

{

"foo" : "bar"

}

User-Defined Functions

In these examples, global variables have no prefix. They can also be prefixed with the
predefined aliaslocal:, but them they must be prefixed both in the declaration and when
used.

Example 12.7. An external global variable with thelocal: alias.

decl are variabl e $l ocal :obj external :={ "foo" : "bar" };
$l ocal : obj
Resul t:
{
"foo" : "bar"
}

Global variables that are imported from other modules are prefixed with the dias
associated with the imported module, as will be explained in the next chapter.

User-Defined Functions

Y ou can define your own functions in the prolog.

Unlike variables, user-defined functions must be prefixed, because unprefixed functions
are the builtin functions.

In the prolog of a main query, these user-defined functions must be prefixed with the
predefined alias local:, both in the declaration and when called.

Remember that types are optional, and if you do not specify any, item* isassumed, both
for parameters and for the return type.

Example 12.8. Some user -defined functions.

decl are function |ocal:say-hello-1(%$x)

{
"Hello, " || $x || "I"

b

declare function |ocal:say-hello-2($x as string)

{

95

User-Defined Functions

“Hello, " || $x || "!"
b
decl are function | ocal:say-hello-3($x as string)
as string
{
“Hello, " || $x || "!"
b

| ocal : say-hello-1("M ster Spock"),
| ocal : say-hell 0-2("M ster Spock"),
| ocal : say-hell 0-3("M ster Spock")

Resul t:
"Hel l o, M ster Spock!"
"Hel l o, M ster Spock!"
"Hel l o, M ster Spock!"

If you do specify types, an error is raised in case of a mismatch

Example 12.9. A type mismatch for a user-defined function.

decl are function | ocal :say-hello($x as string)

{
"Hello, " || $x || "!"
b

| ocal : say-hel | o(1)

Resul t:

An error was raised: xs:integer can not be pr
onobted to paraneter type xs:string of functio
n | ocal : say-hel |l o()

Chapter 13. Modules

Y ou can group functions and variables in separate units, called library modules.

Up to now, everything we encountered were main modules, i.e., a prolog followed by
amain query.

A library module does not contain any query - just functions and variables that can be
imported by other modules.

A library module must be assigned to a namespace. For convenience, this namespace
is bound to an alias in the module declaration. All variables and functions in alibrary
module must be prefixed with this alias.

Example 13.1. A library module.

nodul e namespace ny =
"http://ww. exanpl e. com ny- nodul e";

decl are variable $ny:variable := { "foo" : "bar" };
decl are variable $nmy:n := 42;

declare function ny:function($i as integer)
{

$i * S
1

Once you have defined alibrary module, you can import it in any other module (library
or main). An aliasmust be given to the modul e namespace (my). Variablesand functions
from that modul e can be accessed by prefixing their nameswith thisalias. The aliasmay
be different than theinternal alias defined in theimported module -- only the namespace
really matters.

Example 13.2. An importing main module.

i mport nodul e namespace ot her =
"http://ww. exanpl e. com ny- nodul e";
ot her: functi on($ot her: n)

97

Resul t:
An error was raised: invalid expression: synt
ax error, unexpected character "!"

An engine may come with a number of builtin library modules. For example, there is
the standardized math module.

Example 13.3. Using the math module.

i mport nodul e namespace math =

"http://ww. w3. org/ 2005/ xpat h- functi ons/ mat h";
mat h: pi (),
mat h: pow(2, 30)

Resul t :
3.1415926535897931
1.073741824E9

98

Chapter 14. Function Library

JSONiq provides a rich set of builtin functions. We now introduce them, mostly by
giving examples of usage.

JSON specific functions.
keys

This function returns the keys of an object in an implementation-dependent order.

keys($o as itenr) as string*

Example 14.1. The keys function on an obj ect.
keys({ "foo" : 1, "bar" : 2 })

Resul t:
Ilfooll
n bar n

Example 14.2. The keysfunction on a more general sequence.

keys(({ "foo" : 1, "bar" : 2},
[1, 2],
"foo",
{ "a" : 1, "b" : 2 1}))

Resul t:

An error was raised: sequence of nmore than on
e itemcan not be pronpted to paraneter type
item) of function keys()

members

Thisfunction returns al valuesin an array.

99

parse-json

menbers($a as itent) as itent

Example 14.3. The membersfunction on an array.
menbers(["nmercury", "venus", "earth", "mars"])

Resul t :
"mercury"
"venus"
"earth"
"mars"

Example 14.4. The membersfunction on a general sequence.

menber s((
["mercury", "venus", "earth", "mars"],
"foo",
{ "foo" : "bar" },
["jupiter", "uranus", "neptune"]
))
Resul t:

An error was raised: sequence of nore than on
e itemcan not be pronoted to paraneter type
item) of function menbers()

parse-json

Thisfunction parsesitsfirst parameter (astring) as JSON, and returnstheresulting object
or array (or a sequence thereof).

parse-json($arg as string?) as json-itent

parse-json($arg as string?, $options as object) as json-
itent

The object optionally supplied as the second parameter may contain additional options,
in this case "jsonig-multiple-top-level-items" which indicates where multiple objects
and arrays are to be parsed.

100

size

If parsing is not successful, an error is raised.

Example 14.5. Parsing a JSON document

par se-j son(
“{ \"foo\" : \"bar\" }"
)l
par se-json("
{ \"foo\" : \"bar\" }{ \"foo\" : \"bar\" }",

{ "jsonig-multiple-top-level-itens" : true }
)
Resul t:
{

"foo" : "bar"
}
{

"foo" : "bar"
}
{

"foo" : "bar"
}

Slze

This function returns the size of the supplied array.

size($a as array) as integer

Example 14.6. Retrieving the size of an array.

size([1 to 10])

Resul t:
10

101

encode-for-roundtrip

encode-for-roundtrip

This function encodes any sequence of items, even containing non-JSON types, to a
seguence of JSON items that can be serialized as pure JSON, in a way that it can be
parsed and decoded back using decode-from-roundtrip. JSON features are left intact,
while atomic items annotated with anon-JSON type are converted to objects embedding
all necessary information.

encode-for-roundtrip($itens as itent) as json-itent

Example 14.7. Encoding an object.

let $0 := {
"string" : "foo",
"decimal " : 3.14,

"date" : date("2013-06-21")
}

return encode-for-roundtrip($o)

Resul t:
{
"string" : "foo",
"decimal " : 3.14,
"date" : {
"Qhttp://jsoniqg.org/roundtrip}type"
xs: date",
"Qhttp://jsoniq.org/roundtrip}val ue"
"2013- 06- 21"
}
}

decode-from-roundtrip

This function decodes a sequence previously encoded with encode-for-roundtrip.

decode-fromroundtrip($itens as json-itent) as itent

102

General Builtin Functions

Example 14.8. Decoding an object (do not be confused if thedate does
not appear as a date in the output -- it is because it is serialized as
JSON, but in memory it isindeed a date).

let $o := {
"string" : "foo",
"decimal" : 3. 14,
"date" : date("2013-06-21")
}
l et $e := encode-for-roundtrip($o)

return decode-fromroundtrip($e)

Resul t:

{
"string" : "foo",
"decimal " : 3.14,
"date" : "2013-06-21"

}

General Builtin Functions

Access to the External Environment

collection
This function retrieves the content of a collection.

col l ection($nane as string) as json-itent

Example 14.9. Accessing a collection.
col l ection("one-object")

Resul t:

{
"question” : "What NoSQL technol ogy shoul d
| use?"

103

Logics

}
Logics
boolean

This function convertsitsinput to aboolean, as explained in the section called “Logic”.

bool ean($sequence as itent) as bool ean

Example 14.10. Converting to a boolean.
bool ean("fo00"), bool ean("")

Resul t:
true
fal se

Raising Errors

error
This function raises an error.

error ()

Example 14.11. Raising an error.
if (1 +1ne 3) then error() else true

Resul t :
An error was raised:

Functions on Numbers

abs

This function returns the absolute value of itsinput.

104

Functions on Numbers

abs(nuneric?) as numeric?

Example 14.12. Getting the absolute value.
abs(-2.3)

Resul t :
2.3

ceiling
This function returns the smallest integer that is greater or equal to itsinput.
ceiling(numeric?) as nuneric?

Example 14.13. Getting the ceiling.
ceiling(-2.3)

Resul t:
-2
floor

This function returns the greatest integer that is lower or equal to itsinput.

fl oor (nuneric?) as numeric?

Example 14.14. Getting the Floor.
floor(-2.3)

Resul t :
-3

round

This function rounds its input to a certain precision (upwards in case of ati€), to an
integer if no precision is provided.

105

Functions on Numbers

round(numeri c?) as nuneric?

round(numeric?, integer) as numeric?

Example 14.15. Rounding a number.

round(-2.5145, 3),
round(-2. 3)

Resul t :

-2.514

-2
round-half-to-even

This function rounds its input to a certain precision (making the last digit even in case
of atie), to an integer if no precision is provided.

round- hal f-to-even(nuneric?) as nuneric?

round- hal f -t o-even(numeric?, integer) as numeric?

Example 14.16. Rounding a number to even in case of atie.

round- hal f-to-even(-2.5145, 3)

Resul t :
-2.514

number

This function convertsitsinput to a double.

nunber (anyAt onm cType?) as doubl e

Example 14.17. Parsing a number.

106

Functions on Numbers

nunber (" 3. 14")

Resul t :
3.14

format-integer
This function formats an integer to a string.
format-i nteger(integer?, string) as string
Example 14.18. Formatting an integer.
format-integer((), ""),

format-integer (1234567, "# ##0 [http://ww. zor ba- xquery. coni h
format-integer (1234567, "000' 111' 222' 333")

Resul t :

"1 234 567"
"000' 001" 234' 567"

format-number
This function formats a number to a string.

format - nunber (nuneric?, string) as string

Example 14.19. Formatting a number.

format-nunber((), ""),
f or mat - nunber (1234567. 8901234, "#, ###. 123"),
f or mat - nunber (1234567. 8901234, "000, 111. #")

Resul t:
" NaN'
"1, 234, 567. 890"

107

http://www.zorba-xquery.com/html/modules/w3c/xpath#-0
http://www.zorba-xquery.com/html/modules/w3c/xpath#-0

Functions on Strings

"1, 234,567.9"
Example 14.20. Formatting a number with a different for mat.
decl are default deci mal -f or mat
deci nal - separator = ","
groupi ng- separator =" "

f or mat - nunber (1234567. 8901234 “# O#H#, 123"),
f or mat - nunber (1234567. 8901234, "000 111, #")

Resul t:
"1 234 567, 890"
"1 234 567, 9"

Functions on Strings

codepoints-to-string
This function converts a sequence of Unicode codepoints to a string.
codepoi nts-to-string(integer*) as string

Example 14.21. Building a string from its codepoints.
codepoi nts-to-string((78, 111, 83, 81, 76))

Resul t:
" NoSQL"
string-to-codepoints
This function converts a string to the sequence of its Unicode codepoaints.

string-to-codepoi nts(string?) as integer*

Example 14.22. Getting the codepoints of a string.

108

Functions on Strings

string-to-codepoi nts("NoSQ.")

Resul t:
78
111
83
81
76

codepoint-equal
This function compares two strings codepoint by codepoint.
codepoi nt - equal (string?, string?) as bool ean?

Example 14.23. Comparing two strings codepoint-wise.

codepoi nt - equal (
"NoSQL",
"\ uOO4E\ u006F\ u0053\ uO051\ u004C"

Resul t :
true

concat
This function concatenates atomics (as strings) together (like ||).

concat (anyAt om cType?, anyAtom cType?, ...) as string

Example 14.24. Concatenating atomics.
concat ("foo", 1, true, "bar", ())

Resul t:
"fooltruebar"”

109

Functions on Strings

string-join
This function concatenates strings with a given separator.
string-join(string*) as string
string-join(string*, string) as string

Example 14.25. Concatenating strings with a separator.

string-join((1 to 10) ! string($$), "-"),
string-join((1 to 10) ! string($$))

Resul t:
"1-2-3-4-5-6-7-8-9-10"
"12345678910"

substring
This function extracts a substring given its position (first position is 1) and length.
substring(string?, double) as string

substring(string?, double, double) as string

Example 14.26. Getting a substring.

substring("123456789", 5),
substring("123456789", 10),
substring("123456789", 2, 3),
substring("123456789", 2, 9),
substring((), 4)

Resul t:
"56789"

"234"
"23456789"

110

Functions on Strings

string-length
This function returns the length of its string parameter.
string-1length(string?) as integer

Example 14.27. Getting thelength of a string.

string-1ength("123456789"),
string-length(""),
string-1length(())

Resul t:
9
0
0

upper-case
This function converts a string to upper case.

upper-case(string?) as string

Example 14.28. Converting to upper case.
upper-case(" NoSQ.")

Resul t:

lower-case

This function converts a string to lower case.

| ower-case(string?) as string

Example 14.29. Converting to lower case.

111

Functions on Strings

| ower - case("NoSQL")

Resul t:
n nOSqI n

translate

This function replaces or removes individual characters from the first parameter. The
second parameter liststhe charactersto replace or remove. Thethird parameter provides
areplacement for each of them, in the same order. Characters in the second parameter
that are in excess are removed.

translate(string?, string, string) as string

Example 14.30. Replacing or removing individual characters.

transl ate("NoSQ.", "oN', ""),
transl ate("NoSQ.", "oN', "On"),
transl ate("NoSQ.", "NoL", "n")

Resul t:
" SoL
" hOsQL”
"nSQ'
contains

This function checks whether the first parameter contains the second parameter (the
empty sequenceis considered as"").

contai ns(string?, string?) as bool ean

Example 14.31. Checking whether a string contains another string.

contai ns("NoSQ.", "SQ"),

contai ns("NoSQ.", ""),
contai ns("NoSQ", ()),
contains("", "SQ")

112

Functions on Strings

Resul t :
true
true
true
fal se

starts-with

This function checks whether the first parameter starts with the second parameter (the
empty sequenceis considered as"").

starts-with(string?, string?) as bool ean

Example 14.32. Checking whether a string startswith another string.

starts-with("NoSQ.", "SQ"),
starts-with("NoSQ.", "No"),
starts-with("NoSQ", ()),
starts-with("", "SQ")

Resul t :
fal se
true
true
fal se

ends-with

This function checks whether the first parameter ends with the second parameter (the
empty sequence is considered as"").

ends-wi t h(string?, string?) as bool ean

Example 14.33. Checking whether a string endswith another string.

ends-w t h("NoSQ.", "SQ"),
ends-w t h("NoSQ.", "No"),
ends-wi t h("NoSQ.", ()),
ends-with("", "SQ")

113

Functions on Strings

Resul t:
true
fal se
true
fal se

substring-before

This function extracts the part of the first parameter that comes before the first
occurrence of the second parameter (the empty sequence is considered as"").

substring-before(string?, string?) as string

Example 14.34. Extracting a substring up to the first occurrence of
another one.

substring-before("NoSQ", "SQ"),
substring-before("NoSQ", "No"),
substring-before("NoSQ", ()),
substring-before("", "SQ")

Resul t :
"No"

substring-after

Thisfunction extracts the part of thefirst parameter that comes after the first occurrence
of the second parameter (the empty sequenceis considered as"").

substring-after(string?, string?) as string

Example 14.35. Extracting a substring from the first occurrence of
another one.

114

Functions on Strings

substring-after("NoSQ", "SQ"),
substring-after("NoSQ", "No"),
substring-after("NoSQ", ()),
substring-after("", "SQ")

Resul t :
" soL
" NoSQL"
matches

This function checks whether the first parameter matches the regular expression
provided as the second parameter.

mat ches(string?, string) as bool ean

Example 14.36. Matching a regular expression.

mat ches(" NoSQL", ".*"),
mat ches(" NoSQ", "..SQ"),
mat ches(" NoSQL", "No[A-Z] +")

Resul t :
true
true
true

replace

This function replaces al substrings of the first parameter that match the regular
expression provided as the second parameter with the third parameter.

repl ace(string?, string, string) as string

Example 14.37. Replacing substrings matching a regular expression.

repl ace("NoSQ.", ".*", "MongoDB"),

115

Functions on Strings

replace("NoSQ.", "No([A-Z])", "$1")

Resul t:

An error was raised: invalid expression: synt
ax error, unexpected "(", expecting "node" or
"val ue" or "json"

tokenize

Thisfunction tokenizesitsfirst parameter, taking as a separator all substringsthat match
the regular expression provided as a second parameter.

t okeni ze(string?, string) as string*

Example 14.38. Tokenizing a string.

t okeni ze(" NoSQL", "[a-z]"),
t okeni ze(
"Go Boldly Where No Man Has Gone Before",

Resul t:
"N
"sqQL
" Go"

"Bol dl y"
"Wher e"
" No"

" VRN
"Has"

" Gone"

" Bef or e"

resolve-uri
Resolves arelative URI against an absolute URI.

resol ve-uri (string?, string) as anyURI*

116

Functions on Strings

Example 14.39. Resolving a URI.

resol ve-uri ("types", "http://ww.jsoniq.org/"),
resol ve-uri (
"http://ww. exanpl e. com t ypes”,
"http://ww.jsoniq.org/"

Resul t:
"http://ww.jsoniq.org/types”
"http://ww. exanpl e. com types"

encode-for-uri
Encodes reserved characters with %.

encode-for-uri(string?) as string

Example 14.40. Resolving a URI.
encode-for-uri ("1 + 1 is 2")

Resul t:
"19209%2B%201%20i s%202"

Iri-to-uri
Converts an IRI to a URI by encoding characters not allowed in aURI.

iri-to-uri(string?) as string

Example 14.41. Converting an IRl toa URI.

iri-to-uri(
"http://ww. exanpl e. com chuchi chéaschtli™)

Resul t:

117

Functions on Sequences

"http://ww. exanpl e. com chuchi ch%C3%Ad4scht | i ™

escape-html-uri
Escapesan HTML URI by percent-escaping al characters that are not US-ASCII.
iri-to-uri(string?) as string
Example 14.42. Converting an IRI to a URI.

escape-htm -uri (
"http://ww. exanpl e. com chuchi chaschtli")

Resul t:
"http://ww. exanpl e. com chuchi ch%C3%dscht | i ™

Functions on Sequences

em pty
Checks whether the argument is the empty sequence.

enpty(itent) as bool ean

Example 14.43. Checking whether a sequence is empty.

enpty(()),

enmpty(("foo", "bar")),
enpty(collection("faq")),
enpty(collection("faqg").owner)

Resul t :
true

fal se
fal se

118

Functions on Sequences

fal se

exists
Checks whether the argument is a non-empty sequence.

exi sts(itenr) as bool ean

Example 14.44. Checking whether a sequence is non-empty.

exists(()),

exi sts(("foo", "bar")),

exi sts(collection("faq")),

exi sts(collection("faqg"). owner)

Resul t :
fal se
true
true
true

head

Extracts the first item from a sequence.

head(itent) as itenf?

Example 14.45. Extracting the head from a sequence.

head(()).
head(("foo", "bar")),
head(col | ection("faqg"). owner)

Resul t:

"foo"

{
"user_id" : 279538,
"di spl ay_nanme" : "cedivad",
"reputation" : 430

119

Functions on Sequences

"user _type" : "registered",

"profile_image" : "http://ww. gravatar.com
[avatar/ b77f add2ba791134ac40a9c184beleda?d=i d
enti con&anp; r =PG',

"l'ink" : "http://stackoverfl ow. confusers/2
79538/ cedi vad",
"accept_rate" : 74

}
tail
Extracts all items, but the first, from a sequence.
tail(itemr) as itenr

Example 14.46. Extracting the tail from a sequence.

tail(()),
tail (("foo", "bar")),

tail (collection("faqg").owner)

Resul t:

"bar"

{
"user _id" : 3932,
"di spl ay_nane" : "Randin",
“reputation" : 585,
"user type" : "registered",
"profile_imge" : "http://ww. gravatar.com

[/ avat ar/ d9d7ba9c17d671d911a6ca21d95b2f 98?d=i d
enti con&anp; r =PG',

"link" : "http://stackoverflow. conm users/3
932/ randi n",
"accept _rate" : 100

}
insert-before

I nserts the sequence given as a third parameter at the position (first position is 1) given
as a second parameter into the sequence given as first parameter.

120

Functions on Sequences

i nsert-before(itenr, integer, itenf) as itenr

Example 14.47. Inserting a sequence into a sequence.

insert(("foo", "bar"), 1, "foobar"),
insert(("foo", "bar"), 0, "foobar"),
insert(("foo", "bar"), 42, "foobar"),
insert((), 1, "foobar"),
insert(("foo", "bar"), 1, ())

Resul t:
An error was raised: invalid expression: synt
ax error, unexpected ",", expecting ":" or "i
nt o"

remove

Removes the item at the specified position (first positionis 1).

renove(itent, integer) as itent

Example 14.48. Removing an item from a sequence.

renmove(("foo", "bar"), 1),
remove(("foo", "bar"), 0),
renove(("foo", "bar"), 42),

renove((), 1)

Resul t :
"bar"
"foo"
"bar"
"foo"
"bar"

reverse

Reverses a sequence, i.e., returns the mirrored sequence.

121

Functions on Sequences

reverse(itent) as itent

Example 14.49. Rever sing a sequence.

reverse(("foo", "bar")),
reverse(l to 10),
reverse(())

Resul t :
"bar"
"foo"

=
o

PNWSAOOITO N OO

subsequence

Extracts a subsequence given a starting position (first position is 1) and the number
of items to extract from that position. If the position and length are not integers,
they are rounded using round(). subsequence($arg, 2) is identical to tail($arg) and to
remove($arg, 1). subsequence($arg, 1, 1) isidentical to head($arg).

subsequence(itent, double, double) as itent

subsequence(itent, double) as itent

Example 14.50. Reversing a sequence.

subsequence(1l to 10, 2, 4),
subsequence(1l to 10, 2.1, 3.9),
subsequence(1l to 10, 2, 10),
subsequence(l1l to 10, 0, 1)

122

unordered

Resul t :

P OO~NOOUOPRWNOORWNOOPRAWDN

0

unordered

This function returns the sequence in an order that may be different from its original
order. It can be used to give more leeway for optimizations when the order does not
meatter to the user.

unordered(itent) as itent

Example 14.51. Telling the optimizer that the order of a sequence
does not matter.

unordered(("foo", "bar")),
unordered(1l to 10),
unordered(())

Resul t:
"foo"
"bar"
1

123

distinct-values

P OoO~NO O, WN

0

distinct-values

This function filters out duplicate atomic values.

unor der ed(anyAt om cType*) as anyAtomn cType

Example 14.52. Filtering redundant values.

di stinct-values(("foo", "bar", "foo", "bar", "foo")),
di stinct-values(collection("faq").tags!3[])

Resul t:
An error was raised: invalid expression: synt
ax error, unexpected "]"

index-of

Thisfunction searches a sequence for an atomic value and returns the positions at which
it was found.

i ndex-of (item, anyAtom cType) as integer*

Example 14.53. Filtering redundant values.

i ndex-of (("foo", "bar", "foo", "bar", "foo"), "foo"),
i ndex-of (col l ection("faq").tags!$$[], "nosqgl")

Resul t:

124

deep-equal

An error was raised: invalid expression: synt
ax error, unexpected "]"

deep-equal

This function compares two sequences. In a nutshell, two sequences are deep-equal if
they cannot be distinguished using JSONiq queries. they have the same length, and for
each position, the items are that position are deap-equal .

Atomic values are deep-equal if the eq operator returns true. Objects are deep equal if
the have the exact same keys and for each key the associated values are deep-equal.
Arrays are deep-equal if after unboxing, the obtained sequences are deep-equal.

deep-equal (itenr, itent) as bool ean

Example 14.54. Filtering redundant values.

deep- equal (

{ "foo" : "bar" },
{ "bar" : "foo" }),
deep-equal ({ "foo" [1to 10] }, { lower-case("FQOO")

Resul t :
fal se
true

remainder

 Trigonometric and exponential functions: pi#0 [http://
www.zorba-xquery.com/html/modul es/w3c/xpath#pi-0], exp#l [http://www.zorba
xquery.com/html/modul es/w3c/xpath#exp-1], explo#l [http://www.zorba-

xquery.com/html/modul es/w3c/xpath#expl0-1], log#l [http://www.zorba-
xquery.com/html/modul es/w3c/xpath#log-1], logl0#1 [http://www.zorba-
xquery.com/html/modul es/w3c/xpath#log10-1], pow#2 [http://www.zorba-
xquery.com/html/modul es/w3c/xpath#pow-2], sort#l [http://www.zorba-

xquery.com/html/modul es/w3c/xpath#sgrt-1], sin#l [http://www.zorba-xquery.com/
html/modul es’'w3c/xpath#sin-1], cos#tl [http://www.zorba-xquery.com/html/
modules/w3c/xpath#cos-1], tan#l [http://www.zorba-xquery.com/html/modules/
w3c/xpath#tan-1], asin#l [http://www.zorba-xquery.com/html/modules/w3c/

125

[

1

http://www.zorba-xquery.com/html/modules/w3c/xpath#pi-0
http://www.zorba-xquery.com/html/modules/w3c/xpath#pi-0
http://www.zorba-xquery.com/html/modules/w3c/xpath#pi-0
http://www.zorba-xquery.com/html/modules/w3c/xpath#exp-1
http://www.zorba-xquery.com/html/modules/w3c/xpath#exp-1
http://www.zorba-xquery.com/html/modules/w3c/xpath#exp-1
http://www.zorba-xquery.com/html/modules/w3c/xpath#exp10-1
http://www.zorba-xquery.com/html/modules/w3c/xpath#exp10-1
http://www.zorba-xquery.com/html/modules/w3c/xpath#exp10-1
http://www.zorba-xquery.com/html/modules/w3c/xpath#log-1
http://www.zorba-xquery.com/html/modules/w3c/xpath#log-1
http://www.zorba-xquery.com/html/modules/w3c/xpath#log-1
http://www.zorba-xquery.com/html/modules/w3c/xpath#log10-1
http://www.zorba-xquery.com/html/modules/w3c/xpath#log10-1
http://www.zorba-xquery.com/html/modules/w3c/xpath#log10-1
http://www.zorba-xquery.com/html/modules/w3c/xpath#pow-2
http://www.zorba-xquery.com/html/modules/w3c/xpath#pow-2
http://www.zorba-xquery.com/html/modules/w3c/xpath#pow-2
http://www.zorba-xquery.com/html/modules/w3c/xpath#sqrt-1
http://www.zorba-xquery.com/html/modules/w3c/xpath#sqrt-1
http://www.zorba-xquery.com/html/modules/w3c/xpath#sqrt-1
http://www.zorba-xquery.com/html/modules/w3c/xpath#sin-1
http://www.zorba-xquery.com/html/modules/w3c/xpath#sin-1
http://www.zorba-xquery.com/html/modules/w3c/xpath#sin-1
http://www.zorba-xquery.com/html/modules/w3c/xpath#cos-1
http://www.zorba-xquery.com/html/modules/w3c/xpath#cos-1
http://www.zorba-xquery.com/html/modules/w3c/xpath#cos-1
http://www.zorba-xquery.com/html/modules/w3c/xpath#tan-1
http://www.zorba-xquery.com/html/modules/w3c/xpath#tan-1
http://www.zorba-xquery.com/html/modules/w3c/xpath#tan-1
http://www.zorba-xquery.com/html/modules/w3c/xpath#asin-1
http://www.zorba-xquery.com/html/modules/w3c/xpath#asin-1

remainder

xpath#asin-1], acostl [http:/Iwww.zorba-xquery.com/html/modul es/w3c/
xpath#acos-1], atan#l [http:/Iwww.zorba-xquery.com/html/modul es/w3c/
xpath#atan-1], atan2#1 [http:/Iwww.zorba-xquery.com/html/modul es/w3c/
Xpath#atan2-1]

Functions that test the cardinality of sequences. zero-or-one#l [http://
www.zorba-xquery.com/html/modul es'w3c/xpath#zero-or-one-1], one-or-moretl
[http://www.zorba-xquery.com/html/modul es’w3c/xpath#one-or-more-1], exactly-
one#tl [http://www.zorba-xquery.com/html/modul es’w3c/xpath#exactly-one-1]

Aggregate functions: count#l [http://www.zorba-xquery.com/html/modules/
w3c/xpath#count-1], avgHl [http://mww.zorba-xquery.com/html/modul es/
w3c/xpatht#favg-1], max#1 [http://www.zorba-xquery.com/html/modul esiw3c/

xpath#max-1], min#l [http://www.zorba-xquery.com/html/modul es/w3c/
xpath#min-1], Sunl [http://www.zorba-xquery.com/html/modul es/w3c/
xpath#sum-1]

Serializing functions: serialize#1 [http://www.zorba-xquery.com/html/modul es'w3c/
xpath#serialize-1] (unary)

Context information: current-dateTime#1 [http://www.zorba-xquery.com/
html/modul es/w3c/xpath#current-dateTime-1], current-date#1 [http://www.zorba-
xquery.com/html/modul es/w3c/xpath#current-date-1], current-time#l [http://
www.zorba-xquery.com/html/modul es/w3c/xpath#current-time-1], implicit-
timezone#1 [http://mvww.zorba-xquery.com/html/modul es/w3c/xpath#implicit-
timezone-1], default-collation#1 [http://www.zorba-xquery.com/html/modules/w3c/
xpath#default-collation-1]

Constructor functions: for al builtintypes, with the name of the builtin typeand unary.
Equivalent to a cast expression.

126

http://www.zorba-xquery.com/html/modules/w3c/xpath#asin-1
http://www.zorba-xquery.com/html/modules/w3c/xpath#acos-1
http://www.zorba-xquery.com/html/modules/w3c/xpath#acos-1
http://www.zorba-xquery.com/html/modules/w3c/xpath#acos-1
http://www.zorba-xquery.com/html/modules/w3c/xpath#atan-1
http://www.zorba-xquery.com/html/modules/w3c/xpath#atan-1
http://www.zorba-xquery.com/html/modules/w3c/xpath#atan-1
http://www.zorba-xquery.com/html/modules/w3c/xpath#atan2-1
http://www.zorba-xquery.com/html/modules/w3c/xpath#atan2-1
http://www.zorba-xquery.com/html/modules/w3c/xpath#atan2-1
http://www.zorba-xquery.com/html/modules/w3c/xpath#zero-or-one-1
http://www.zorba-xquery.com/html/modules/w3c/xpath#zero-or-one-1
http://www.zorba-xquery.com/html/modules/w3c/xpath#zero-or-one-1
http://www.zorba-xquery.com/html/modules/w3c/xpath#one-or-more-1
http://www.zorba-xquery.com/html/modules/w3c/xpath#one-or-more-1
http://www.zorba-xquery.com/html/modules/w3c/xpath#exactly-one-1
http://www.zorba-xquery.com/html/modules/w3c/xpath#exactly-one-1
http://www.zorba-xquery.com/html/modules/w3c/xpath#exactly-one-1
http://www.zorba-xquery.com/html/modules/w3c/xpath#count-1
http://www.zorba-xquery.com/html/modules/w3c/xpath#count-1
http://www.zorba-xquery.com/html/modules/w3c/xpath#count-1
http://www.zorba-xquery.com/html/modules/w3c/xpath#avg-1
http://www.zorba-xquery.com/html/modules/w3c/xpath#avg-1
http://www.zorba-xquery.com/html/modules/w3c/xpath#avg-1
http://www.zorba-xquery.com/html/modules/w3c/xpath#max-1
http://www.zorba-xquery.com/html/modules/w3c/xpath#max-1
http://www.zorba-xquery.com/html/modules/w3c/xpath#max-1
http://www.zorba-xquery.com/html/modules/w3c/xpath#min-1
http://www.zorba-xquery.com/html/modules/w3c/xpath#min-1
http://www.zorba-xquery.com/html/modules/w3c/xpath#min-1
http://www.zorba-xquery.com/html/modules/w3c/xpath#sum-1
http://www.zorba-xquery.com/html/modules/w3c/xpath#sum-1
http://www.zorba-xquery.com/html/modules/w3c/xpath#sum-1
http://www.zorba-xquery.com/html/modules/w3c/xpath#serialize-1
http://www.zorba-xquery.com/html/modules/w3c/xpath#serialize-1
http://www.zorba-xquery.com/html/modules/w3c/xpath#serialize-1
http://www.zorba-xquery.com/html/modules/w3c/xpath#current-dateTime-1
http://www.zorba-xquery.com/html/modules/w3c/xpath#current-dateTime-1
http://www.zorba-xquery.com/html/modules/w3c/xpath#current-dateTime-1
http://www.zorba-xquery.com/html/modules/w3c/xpath#current-date-1
http://www.zorba-xquery.com/html/modules/w3c/xpath#current-date-1
http://www.zorba-xquery.com/html/modules/w3c/xpath#current-date-1
http://www.zorba-xquery.com/html/modules/w3c/xpath#current-time-1
http://www.zorba-xquery.com/html/modules/w3c/xpath#current-time-1
http://www.zorba-xquery.com/html/modules/w3c/xpath#current-time-1
http://www.zorba-xquery.com/html/modules/w3c/xpath#implicit-timezone-1
http://www.zorba-xquery.com/html/modules/w3c/xpath#implicit-timezone-1
http://www.zorba-xquery.com/html/modules/w3c/xpath#implicit-timezone-1
http://www.zorba-xquery.com/html/modules/w3c/xpath#implicit-timezone-1
http://www.zorba-xquery.com/html/modules/w3c/xpath#default-collation-1
http://www.zorba-xquery.com/html/modules/w3c/xpath#default-collation-1
http://www.zorba-xquery.com/html/modules/w3c/xpath#default-collation-1

Part V. Advanced Notes

Chapter 15. Errors

Builtin expressions, operators and functions may raise errors under various conditions.
An example is a mismatching type.

The evaluation of a JSONiq expression either returns a sequence of items, or raises an
error.

Errors can be reported statically, or dynamically (at runtime).

Errors can aso be raised by hand.

Example 15.1. Raisingan error.
error()

Resul t :
An error was raised:

Lazy evaluation and optimizations with regard to errors are allowed. Raising errorsis
not always deterministic, as in some cases the processor might (but is not required to)
stop evaluating the operands of an expression if it determines that only one possible
value can be returned by that expression. The following expression may return true, or
may raise an error.

Example 15.2. Non-deter ministic behavior.
true or error()

Resul t :
true

129

130

Chapter 16. Equality vs.
ldentity

As in most languages, one can distinguish between physical equality and logical
equality.

Atomics can only be compared logically. Their physically identity is totally opague to
you.

Example 16.1. L ogical comparison of two atomics.
legl

Resul t:
true

Example 16.2. L ogical comparison of two atomics.
1l eq?2

Resul t:
fal se

Example 16.3. L ogical comparison of two atomics.
"foo" eq "bar"

Resul t :
fal se

Example 16.4. Logical comparison of two atomics.

"fOO" ne n bar n

131

Resul t :
true

Two objects or arrays can be tested for logical equality as well, using deep-equal(),
which performs a recursive comparison.

Example 16.5. Logical comparison of two JSON items.

deep-equal ({ "foo" : "bar" }, { "foo" : "bar" })

Resul t :
true

Example 16.6. L ogical comparison of two JSON items.

deep-equal ({ "foo" : "bar" }, { "bar" : "foo" })

Resul t:
fal se

The physical identity of objectsand arraysis not exposed to the user in the core JISONiq
language itself. Some library modules might be able to reved it, though.

132

Chapter 17. Sequences vs.
Arrays

Even though JSON supports arrays, JSONiq uses a different construct as its first class
citizens: sequences. Any value returned by or passed to an expression is a sequence.

The main difference between sequences and arraysisthat sequences are completely flat,
meaning they cannot contain other sequences.

Since sequences are flat, expressions of the JSONiq language just concatenate them to
form bigger sequences.

Thisiscrucial to allow streaming results, for example through an HTTP session.

Example 17.1. Flat sequences.

((1, 2), (3, 4)

Resul t:
1

2
3
4
Arrays on the other side can contain nested arrays, like in JSON.

Example 17.2. Nesting arrays.
([1 2], 03 4]]

Resul t :
[[2], [3 4]]

Many expressions return single items - actualy, they really return a singleton sequence,
but a singleton sequence of one item is considered the same as the item itself.

133

Example 17.3. Singleton sequences.
1+1

Resul t :
2

This is different for arrays. a singleton array is distinct from its unique member, like
in JSON.

Example 17.4. Singleton sequences.

An array isasingle item. A (non-singleton) sequence is not. This can be observed by
counting the number of items in a sequence.

Example 17.5. count() on an array.
count ([1, "foo", [1, 2, 3, 4], { "foo" : "bar" }])

Resul t:
1

Example 17.6. count() on a sequence.
count((1, "foo", [1, 2, 3, 4], { "foo" : "bar" }))

Resul t :
4

Other than that, arrays and sequences can contain exactly the same members (atomics,
arrays, objects).

134

Example 17.7. Membersof an array.

[1, "foo", [1, 2, 3, 4], { "foo" : "bar" }]
Resul t:
[1, "foo", [1, 2, 3, 41, { "foo" : "bar" }
]

Example 17.8. Members of a sequence.

(1, "foo", [1, 2, 3, 4], { "foo" : "bar" })
Resul t :
1
"foo"
[1, 2, 3, 4]
{
"foo" : "bar"
}

Arrays can be converted to sequences, and vice-versa.

Example 17.9. Converting an array to a sequence.

[1, "foo", [1, 2, 3, 4], { "foo" : "bar" }]()
Resul t:

1

"foo"

[1, 2, 3, 4]

{

"foo" : "bar"
}

Example 17.10. Converting a sequenceto an array.

135

[(1,

Resul t :
[1,
]

"foo",

"foo",

[1, 2, 3, 4],

[1, 2, 3, 41,

{

{

"foo"

"foo"

"bar"

"bar"

)]

136

Chapter 18. Null vs. Empty
Sequence

Null and the empty sequence are two different concepts.

Null isan item (an atomic value), and can be amember of an array or of a sequence, or
the value associated with akey in an object. Empty sequences cannot, as they represent
the absence of any item.

Example 18.1. Null valuesin an array
[null, 1, null, 2]

Resul t:
[null, 1, null, 2]

Example 18.2. Null valuesin an object

{ "foo" : null }
Resul t:
{
"foo" : null
}

Example 18.3. Null valuesin a sequence
(nul'l, 1, null, 2)

Resul t :
nul |

1

nul |

2

137

If an empty sequence is found as an object value, it is automatically converted to null.

Example 18.4. Automatic conversion to null.

{ "foo" : () }
Resul t :
{
"foo" : null
}

In an arithmetic opration or acomparison, if an operand isan empty sequence, an empty
sequence is returned. If an operand is anull, an error is raised except for equality and
inequality.

Example 18.5. Empty sequencein an arithmetic oper ation.
() +2

Resul t :

Example 18.6. Null in an arithmetic oper ation.

null + 2

Resul t:

An error was raised: arithnetic operation not
defined between types "js:null" and "xs:inte
ger"

Example 18.7. Null and empty sequencein an arithmetic operation.

nul |+ ()

138

Resul t:

Example 18.8. Empty sequencein a comparison.

() eq 2

Resul t :

Example 18.9. Null in a comparison.

null eq 2
Resul t :
fal se

Example 18.10. Null in a comparison.

null It 2

Resul t:
true

Example 18.11. Null and the empty sequence in a comparison.

null eq ()

Resul t:

Example 18.12. Null and the empty sequence in a comparison.

139

null 1t ()

Resul t :

140

Chapter 19. Reference

A great part of JSONiqisdirectly inherited from XQuery -- everything that is orthogonal
to XML.

If you would like to know more about JSONiq, you can browse http: //wwww.jsonig.org/.

If you areinterested in knowing the semantics of the expressions more in depth, you can
find most of them on the XQuery 3.0 specification at http://mmw.w3.org/ TR/xquery-30.

If you are interested in knowing the semantics of the builtin functions more in depth,
you can find most of them on the XPath and XQuery Functions and Operators 3.0
specification at http://www.w3.org/TR/xpath-functions-30.

141

142

	Introduction to JSONiq
	Table of Contents
	Chapter 1. Introduction
	NoSQL - Why Are Relational Databases Not Good Enough?
	Why JSONiq?
	How to Run the Queries in This Book?
	Acknowledgements

	Part I. JSON and the JSONiq Data Model
	Chapter 2. The JSON Syntax
	JSON Strings
	JSON Numbers
	JSON Booleans
	JSON Null
	JSON Objects

	Chapter 3. The JSONiq Data Model
	JSONiq Values: Items and Sequences
	Objects
	Arrays
	Atomics

	Chapter 4. The JSONiq Type System
	Item Types
	Atomic Types
	JSON Item Types : Object Types and Array Types
	The Most General Item Type.

	Sequence Types

	Part II. Construction of Items and JSON Navigation
	Chapter 5. Construction of Items
	Atomic Literals
	String Literals
	Number Literals.
	Boolean and Null Literals

	Object Constructors
	Array Constructors
	Composing Constructors

	Chapter 6. Collections
	Collections Used Throughout This Book

	Chapter 7. JSON Navigation
	Object Navigation
	Array Unboxing
	Sequence Filtering
	Array Navigation

	Part III. JSONiq Expressions
	Chapter 8. Basic Operations
	Construction of Sequences
	Comma Operator
	Range Operator

	Parenthesized Expressions
	Arithmetics
	String Concatenation
	Comparison
	Empty Sequence Behavior
	Logic
	Propositional Logic
	First-Order Logic (Quantified Variables)

	Builtin Functions

	Chapter 9. Control Flow Expressions
	Conditional Expressions
	Switch expressions
	Try-Catch expressions

	Chapter 10. FLWOR Expressions
	Variables
	For Clauses
	Where Clauses
	Order Clauses
	Group Clauses
	Let Clauses
	Count Clauses
	Map Operator
	Composing FLWOR Expressions
	Ordered and Unordered Expressions

	Chapter 11. Expressions Dealing with Types
	Instance-of Expressions
	Treat Expressions
	Castable Expressions
	Cast Expressions
	Typeswitch Expressions

	Part IV. Prolog, Modules and Functions
	Chapter 12. Prologs
	Setters.
	Default Ordering Mode
	Default Ordering Behaviour for Empty Sequences
	Default Decimal Format

	Namespaces
	Global Variables
	User-Defined Functions

	Chapter 13. Modules
	Chapter 14. Function Library
	JSON specific functions.
	keys
	members
	parse-json
	size
	encode-for-roundtrip
	decode-from-roundtrip

	General Builtin Functions
	Access to the External Environment
	collection

	Logics
	boolean

	Raising Errors
	error

	Functions on Numbers
	abs
	ceiling
	floor
	round
	round-half-to-even
	number
	format-integer
	format-number

	Functions on Strings
	codepoints-to-string
	string-to-codepoints
	codepoint-equal
	concat
	string-join
	substring
	string-length
	upper-case
	lower-case
	translate
	contains
	starts-with
	ends-with
	substring-before
	substring-after
	matches
	replace
	tokenize
	resolve-uri
	encode-for-uri
	iri-to-uri
	escape-html-uri

	Functions on Sequences
	empty
	exists
	head
	tail
	insert-before
	remove
	reverse
	subsequence

	unordered
	distinct-values
	index-of
	deep-equal
	remainder

	Part V. Advanced Notes
	Chapter 15. Errors
	Chapter 16. Equality vs. Identity
	Chapter 17. Sequences vs. Arrays
	Chapter 18. Null vs. Empty Sequence

	Chapter 19. Reference

